• 제목/요약/키워드: Core Alloy

검색결과 222건 처리시간 0.025초

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

Fine Structure Effect of PdCo electrocatalyst for Oxygen Reduction Reaction Activity: Based on X-ray Absorption Spectroscopy Studies with Synchrotron Beam

  • Kim, Dae-Suk;Kim, Tae-Jun;Kim, Jun-Hyuk;Zeid, E. F. Abo;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.31-38
    • /
    • 2010
  • In this study, we have demonstrated the fine structure effect of PdCo electrocatalyst on oxygen reduction reaction activity with different alloy composition and heat-treatment time. In order to identify the intrinsic factors for the electrocatalytic activity, various X-ray analyses were used, including inductively coupled plasma-atomic emission spectrometer, transmission electron microscopy, X-ray diffractometer, and X-ray Absorption Spectroscopy technique. In particular, extended X-ray absorption fine structure was employed to extract the structural parameters required for understanding the atomic distribution and alloying extent, and to identify the corresponding simulated structures by using FEFF8 code and IFEFFIT software. The electrocatalytic activity of PdCo alloy nanoparticles for the oxygen reduction reaction was evaluated by using rotating disk electrode technique and correlated to the change in structural parameters. We have found that Pd-rich surface was formed on the Co core with increasing heating time over 5 hours. Such core shell structure of PdCo/C showed that a superior oxygen reduction reaction activity than pure Pd/C or alloy phase of PdCo/C electrocatalysts, because the adsorption energy of adsorbates was apparently reduced by lowering the dband center of the Pd skin due to a combination of the compressive strain effect and ligand effect.

소결 13Cr-1.5Nb-Fe 합금의 교류 자기 특성 (Fabrication of 13Cr-1.5Nb-Fe Alloy Powder and AC Magnetic Properties of the Sintered Magnetic Core)

  • 오환수;김택기;조용수
    • 한국자기학회지
    • /
    • 제10권1호
    • /
    • pp.11-15
    • /
    • 2000
  • 수분사법으로 제조된 13Cr-1.5Nb-Fe 합금분말을 수소분위기 하에서 환원처리 하였다. 분말특성이 조사된 환원분말을 이용하여 자기코아를 제작한 후 약 $10^{-5}$Torr의 진공분위기에서 소결하였다. 자기코아의 교류자기특성을 조사하기 위하여 투자율과 자기손실을 조사하였다. 환원분말의 입도분포는 약 70$\mu\textrm{m}$에서 50% vol.을 나타내며, 포화자화 값은 약160 emu/g이었다. 10ton/$\textrm{cm}^2$ 성형압력, 1,20$0^{\circ}C$ 소결온도에서 제작된 자기코아의 교류투자율은 주파수, f=1 kHz, 인가자장, H$_{a}$ =5 Oe에서 400이다. 또한 동조건에서 제작된 자기코아의 교류자기이력손실은 유도자화, B$_{m}$ =80G에서 0.12mW/cc이다.

  • PDF

티타늄 합금(Ti-6A1-4V)의 밀링가공에서 L자형 얇은 벽 구조의 가공품질 향상 (Improving Machining Quality of L-Shaped Thin-Walled Structure in Milling Process of Ti-Alloy (Ti-6Al-4V))

  • 김종민;구준영;전차수
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.52-59
    • /
    • 2021
  • Titanium alloy (Ti-alloy) is widely used as a material for core parts of aircraft structures and engines that require both lightweight and heat-resistant properties owing to their high specific stiffness. Most parts used in aircraft have I-, L-, and H-shaped thin-walled structures for weight reduction. It is difficult to machine thin-walled structures owing to vibrations and deformations during machining. In particular, cutting tool damage occurs in the corners of thin-walled structures owing to the rapid increase in cutting force and vibration, and machining quality deteriorates because of deep tool marks on machined surfaces. In this study, milling experiments were performed to derive an effective method for machining a L-shaped thin-walled structure with Ti-alloy (Ti-6Al-4V). Three types of machining experiment were performed. The surface quality, tool wear, cutting force, and vibration were analyzed comprehensively, and an effective machining method in terms of tool life and machining quality was derived.

유한요소법을 이용한 네오디움 영구자석의 코어 설계 (Design of Neodymium Permanent Magnetic Core using FEM)

  • 허관도;예상돈
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

송전선 강심용 Fe-Ni-Co-C 합금의 열팽창계수에 미치는 자기적 특석의 영향 (Effects of Magnetic Characteristics on Coefficient of Thermal Expansion in Fe-Ni-Co-C Invar Alloy for Transmission Line)

  • 김봉서;김병걸;이희웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1346-1348
    • /
    • 2001
  • Generally, Invar alloy shows very low thermal expansion characteristics, lower than $2{\times}10^{-6}$/K approximately. To apply Fe-Ni-Co-C Invar alloy as a core material for large ampacity transmission line we studied the effects of magnetic properties on coefficient of thermal expansion. The coefficient of thermal expansion(CTE) suddenly decreases with addition of a little carbon(0.08%), increases with the increasing carbon and has a constant value at the composition over than 1.0%C. The trend of Curie temperature change with carbon is similar with that of CTE. Therefore, the CTE has a linear relationship with Curie temperature. However, the CTE linearly decreases with the ratio of saturation magnetization and Curie temperature(${\sigma}_s/T_c$).

  • PDF

$Fe_{87}Zr_{7}B_{5}Ag_{1}$(at%) 비정질 합금의 연자기 특성 (The Soft Magnetic Properties of $Fe_{87}Zr_{7}B_{5}Ag_{1}$ Amorphous Alloy)

  • 김현식;오영우;김병걸;정순종;김기욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 춘계학술대회 논문집
    • /
    • pp.120-122
    • /
    • 1994
  • We examined the magnetic properties as a function of annealing temperature of the as-quenched $Fe_{87}Zr_{7}B_{5}Ag_{1}$ amorphous alloy. The values of $H_{c}$=30m0e, $B_{a}$=0.44T and ${\mu}$i=146000 at $300^{\circ}C$ annealing treatment are obtained. The excel lent soft magnetic properties seem to result from the annihilation of quenching-Induced internal stress by the heat treatment and the change of microstructure due to the different relaxation behavior owing to adding insoluble element such as Ag. Therefore, the $Fe_{87}Zr_{7}B_{5}Ag_{1}$ amorphous alloy is quite promising for practical use as a core material in various transformers of high transformers of high frequency.

  • PDF

표면 절연층이 나노결정립 합금 리본의 자기적 특성에 미치는 영향 (The Effects of Surface Insulation Layer on the Magnetic Properties of Nanocrystalline Alloy Ribbons)

  • 오영우
    • 한국자기학회지
    • /
    • 제17권6호
    • /
    • pp.226-231
    • /
    • 2007
  • 나노결정질 비정질 리본 표면에 졸-겔법에 의해 제조된 $TiO_2$$SiO_2$ 졸을 딥 코팅법을 이용하여 절연막을 형성시킴으로써 전기 비저항의 증가를 통한 고주파 손실을 제어하고자 하였다. 졸-겔법에 의한 슬러리 제조에서, 금속 알콕사이드의 혼합조건 및 절연층 형성용 슬러리의 제조조건을 확립하였고, 비정질 합금 리본 표면에 균일하고 우수한 점착력을 가지는 절연층을 형성시킬 수 있었다. 그리고 표면 절연층이 형성된 나노 결정질 합금 재료를 이용하여 제조한 자심재료는 전기 비저항의 증가로 인해 코어 손실을 약 40% 이상 감소시킬 수 있었다. 또한 표면 절연층을 형성시킨 자심재료를 이용하여 제조한 비접촉식 커플러는 코어 손실의 감소로 인해 삽입손실의 감소 효과가 나타났으며, 삽입손실의 감소효과는 주파수 증가에 따라 증가하였다.