• Title/Summary/Keyword: Coprecipitation-oxidation method

Search Result 20, Processing Time 0.032 seconds

Crystal Structures of Ba-ferrites Synthesize by Coprecipitation-Oxidation Method (공침-산화법으로 합성된 바륨페라이트의 결정구조)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1045-1052
    • /
    • 1997
  • Barium ferrites (BaFe12O19) were synthesized at the various temperature by the coprecipitation-oxidation method. X-ray diffraction Rietveld analysis for barium ferrites were performed, their microstructures were observed and their magnetic properties were measured, in order to analyze the crystal structures and determine the optimal temperature of heat-treatment. The barium ferrite, its average particle size 80 nm, was formed at 600℃ through the hematite (α-Fe2O3), but the site occupations of the Fe's in tetrahedral and bipyramidal sites and of the Ba relatively low. Increasing the heating temperature, these occupations and the magnetization increased, and the crystal c-axis decreased. These changes were very small at the heat treatment of above 800℃, but the particles were rapidly grown. It is suggested that the optimal temperature of heat-treatment is 800℃, at which temperature crystal structure is relatively stable and the particles hardly ever grow.

  • PDF

Preparation of $\delta$-FeOOH by Coprecipitation Method and Its Magnetic Properties (공침법에 의한 $\delta$-FeOOH의 제조 및 자기 특성)

  • 김성재;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.327-331
    • /
    • 1996
  • $\delta$-FeOOH was prepared by rapid oxidation method of Fe(OH)2 using H2O2. The effects of reaction temperature and mole ratio ([OH-]/[Fe2+])의 몰비를 제조 변수로 하여 최종 생성된 $\delta$-FeOOH의 입자크기 입자형태, 자기특성을 조사하였다. Fe(OH)2 의 반응온도 및 [OH-]/[Fe2+] 비가 $\delta$-FeOOH의 입자크기 및 형상에 많은 영향을 미침을 알수 있었으며 입자 크기는 이 두인자에 비례하여 증가하였다 Fe(OH)2 의 반응온도가 4$0^{\circ}C$ [OH-]/[Fe2+]=5 Fe(OH)2 숙성 시간 2시간에서 제조된 $\delta$-FeOOH를 TEM, VSM으로 입자의 크기 및 자기특성을 조사한결과 평균 입경이 630$\AA$ 정도이고 입도 분포가 양호하였으며 포화자화 및 보자력은 각각 20.8emu/g 210 Oe였다.

  • PDF

The Effects of Oxidation Conditions on the Magnetic Properties of Cu-Zn Ferrite Powder (산화 조건에 따른 Cu-Zn Ferrite분말의 자기적 특성)

  • Shin, K.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.222-224
    • /
    • 1993
  • In this paper, The optimum oxidation conditions for the formation of Cu-Zn ferrite were investigated using precipitates obtained by the mixture of $CuCl_2{\cdot}2H_2O$, $ ZnCl_2$, $FeCl_3{\cdot}6H_2O$ and NaOH. The precipitates were prepared by coprecipitation method on various temperatures and oxidation conditions. The oxidation products were examined by SEM, XRD, and VSM. The particles obtained at 70($^{\circ}C$) were more spherical and fine than that of prepared at 25($^{\circ}C$), 50($^{\circ}C$), 60($^{\circ}C$), respectively. By $H_2O_2$ oxidation, the saturation magnetization of the powders was little influenced, But, by air oxidation the saturation magnetization of the powders was influenced intricately. According to our experimental data, the saturation magnetization of the powders increased with reaction time and was saturated at 9 hours.

  • PDF

Formation of Hexagonal Ferrite $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$) Prepared by Coprecipitation-oxidation Method (공침산화법에 의한 육방정 페라이트 $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$)의 생성)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1023-1029
    • /
    • 2001
  • Hexagonal ferrite $Co_2$Z(B $a_3$ $Co_2$F $e_{24}$ $O_{41}$ ) was prepared by various coprecipitation-oxidation methods. The formation of $Co_2$Z was studied in order to determine the optimal method. The $Co_2$Z composition hydroxides were prepared with the different oxidation and precipitation from the aqueous solution of $Ba^{2+}$, $Co^{2+}$ and F $e^{2+}$ chloride mixture. The coprecipitates were heat-treated at various temperatures, and their formation phases and microstructures were investigated from the analyses of DTA/TGA, powder XRD and SEM. The $Co_2$Z phase was observed in the case where the precursor will have the amorphous like oxyhydoxide($\delta$-FeOOH), and formed from $Ba_3$F $e_{32}$ $O_{51}$ , BaF $e_{12}$ $O_{19}$ (M-type) and $Ba_2$ $Co_2$F $e_{12}$ $O_{22}$ (Y-type). The $Co_2$Z was synthesized by the heat-treatment of the coprecipitate, which was prepared from the precipitation after oxidizing the chloride mixed solution, above 110$0^{\circ}C$.EX>.

  • PDF

Study on Catalytic Activity of the Selective CO Oxidation and Characterization Using $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite Catalysts ($La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite촉매의 선택적 CO 산화반응 및 특성 분석에 관한 연구)

  • Sohn, Jung-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2007
  • [ $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ ](X=0, 0.1, 0.3, 0.5) perovskites were prepared by coprecipitation method at pH 7 or pH 11 and its catalytic activity of selective CO oxidation was investigated. The characteristics of these catalysts were analyzed by $N_2$ adsorption, X-ray diffraction(XRD), SEM, $O_2$-temperature programmed desorption(TPD). The pH value at a preparation step made effect on particle morphology. The smaller particle was obtained with a condition of pH 7. The better catalytic activity was observed using catalysts prepared at pH 7 than pH 11. The maximum CO conversion of 98% was observed over $La_{0.5}Ce_{0.5}Co_{0.7}Cu_{0.3}O_{3-{\alpha}}$ at $320^{\circ}C$. Below $200^{\circ}C$, the most active catalyst was $La_{0.5}Ce_{0.5}Co_{0.9}Cu_{0.1}O_{3-{\alpha}}$, of which conversion was 92% at $200^{\circ}C$. By the substitution of Cu, the evolution of ${\alpha}$-oxygen was remarkably enhanced regardless of pH value at preparation step according to $O_2$-TPD. Among the different ${\alpha}$-oxygen species, the oxygen species evolved between $400^{\circ}C$ and $500^{\circ}C$, gave the better catalytic performance for selective CO oxidation including $La_{0.5}Ce_{0.5}CoO_3$ in which Cu was absent.

Properties of Hexaferrite Co2Y(Ba2Co2Fe12O22) Prepared by Coprecipitation Method (공침법에 의해 제조된 육방정 산화철 Co2Y(Ba2Co2Fe12O22)의 특성)

  • 신형섭;이상걸;권순주
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 1992
  • It had been studied the structure and the magnetic properties of singel phase Co2Y(Ba2Co2Fe12O22) powder, one of the hexagonal ferrite. The material was successfully prepared by a commercially applicable coprecipitation method. Adding asqueous solution of BaCl2, CoCl2 and FeCl2(Ba2+:Co2+:Fe2+=1:1:6 in mole ratio) to a mixture of NaOH and hydrogen peroxide solution, coprecipitate was formed with rapid oxidation of ferrous to ferric ion. The coprecipitate transformed to single phase Co2Y powder at heat treatment temperatures as low as 900$^{\circ}C$. The shape of Co2Y particles obtained at 900$^{\circ}C$ was hexagonal plate-like (diameter∼$\mu\textrm{m}$, aspect ratio>10). The structure of the Co2Y was refined by a Rietveld analysis of the measured X-ray diffractogram. The lattice parameters are ao=5.8602${\AA}$ and co=43.512${\AA}$. Co2Y is a soft magnetic material with saturation magnetization 30 emu/g and coecivity 170 . A standard X-ray diffraction pattern for Co2Y is proposed as well.

  • PDF

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I))

  • Lee, Jong-Cheul;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1381-1389
    • /
    • 2007
  • Wastewater discharged by industrial activities of metal finishing and electroplating units is often contaminated by a variety of toxic or otherwise harmful substances which have a negative effects on the water environment. The treatment method of heavy metal-cyanide complexes wastewater by alkaline chlorination have already well-known($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV). In this case, the efficiency for the removal of ferro/ferri cyanide by this general alkaline chlorination is very high as 99%. But the permissible limit of Korean waste-water discharge couldn't be satisfied. The initial concentration of cyanide was 374 mg/L(the Korean permissible limit of cyanide is 1.0 mg/L max.). So a particular focus was given to the treatment of heavy metal-cyanide complexes wastewater by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation after alkaline chlorination. And we could meet the Korean permissible limit of cyanide(the final concentration of cyanide: 0.30 mg/L) by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation(reaction time: 30 min, pH: 8.0, rpm: 240). The removal of Chromium ion by reduction(pH: 2.0 max, ORP: 250 mV) and the precipitation of metal hydroxide(pH: 9.5) is treated as 99% of removal efficiency. The removal of Copper and Nickel ion has been treated by $Na_2S$ coagulation-flocculation as 99% min of the efficiency(pH: $9.09\sim10.0$, dosage of $Na_2S:0.5\sim3.0$ mol). It is important to note that the removal of ferro/ferri cyanide of heavy metal-cyanide complexes wastewater should be employed by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation as well as the alkaline chlorination for the Korean permissible limit of waste-water discharge.

Hydrogenation of Ethyl Acetate to Ethanol over Bimetallic Cu-Zn/SiO2 Catalysts Prepared by Means of Coprecipitation

  • Zhu, Ying-Ming;Shi, Xin Wang Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.141-146
    • /
    • 2014
  • A series of bimetallic Cu-Zn/$SiO_2$ catalysts were prepared via thermal decomposition of the as-synthesized $CuZn(OH)_4(H_2SiO_3)_2{\cdot}nH_2O$ hydroxides precursors. This highly dispersed Cu-solid base catalyst is extremely effective for hydrogenation of ethyl acetate to ethanol. The reduction and oxidation features of the precursors prepared by coprecipitation method and catalysts were extensively investigated by TGA, XRD, TPR and $N_2$-adsorption techniques. Catalytic activity by ethyl acetate hydrogenation of reaction temperatures between 120 and $300^{\circ}C$, different catalyst calcination and reduction temperatures, different Cu/Zn loadings have been examined extensively. The relation between the performance for hydrogenation of ethyl acetate and the structure of the Cu-solid base catalysts with Zn loading were discussed. The detected conversion of ethyl acetate reached 81.6% with a 93.8% selectivity of ethanol. This investigation of the Cu-Zn/$SiO_2$ catalyst provides a recently proposed pathway for ethyl acetate hydrogenation reaction to produce ethanol over Cu-solid base catalysts.

Synergistic Effects of Mo-V Based Mixed Oxide Catalysts for Acrolein Oxidation(I) (아크로레인 산화용 Mo-V 계 혼합산화물 촉매의 상승효과(I))

  • Na, Suk-Eun;Kim, Kyung-Hoon;Chung, Jong-Shik;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.717-721
    • /
    • 1992
  • Mechanical mixtures of vanadium molybdate and copper molybdate catalysts prepared by coprecipitation method, and those of $MoO_3$ and $V_2O_5$ were used to study the synergistic effects between each metal oxide for the selective oxidation of acrolein. The catalytic activity results revealed that the conversion of acrolein and yield of acrylic acid were increased with the mixture catalysts and it could be explained by a remote control mechanism. Thermal gravimetric analysis confirmed the evolution of lattice oxygen in the mixture catalysts.

  • PDF