• Title/Summary/Keyword: Copper-tube

Search Result 264, Processing Time 0.03 seconds

The Influence of pH on Corrosion Behavior of Copper Tubes in Tap Water (수돗물의 pH가 동관의 부식에 미치는 영향)

  • Min, Sung-Ki;Na, Seung-Chan;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.232-237
    • /
    • 2009
  • Copper tubes are widely used in the distribution systems of drinking water throughout the world because of their excellent corrosion resistance, high thermal conductivity, and ease of fabrication. However, corrosion problems from copper tubes as blue water phenomenon and leakage have been reported appreciably. The effect of pH on the corrosion behavior of copper tube for tap water was investigated by electrochemical voltammetric techniques in synthetic tap water. And the copper corrosion cases were discussed from the viewpoint of factors affecting the corrosion rate such as pH, alkalinity, LSI(Langelier Saturation Index), and concentration of bicarbonate and dissolved carbon dioxide.

Comparison of the Thermal Performance with Stationary and Tracking Evacuated CPC Collectors (고정형과 추적형 Evacuated CPC 집열기의 열성능 비교)

  • Yun, Seong-Eun;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.19-25
    • /
    • 2004
  • A numerical study is performed to investigate the effect of sun tracking on the thermal performance of the evacuated compound parabolic concentrator (CPC) collectors. The evacuated CPC collectors consist of a two-layered glass tube, a copper tube and a reflector. The collector has a copper tube as an absorber and a reflector inside a glass tube. The water is used as a working fluid. The length and the diameter of the glass tube are 1,700mm and 70mm, respectively. The length and the diameter of the copper tube are 1,700mm and 25.4mm, respectively. Ray tracing analysis is carried out in order to compare absorbed heat fluxes on the absorber surface of the stationary and tracking collectors. The collected energy is calculated and compared with that on a fixed surface tilted at $35^{\circ}$ on the ground and facing south. The results indicate that the collected solar energy of the sun tracking system is significantly larger than that of a stationary collector. The sun tracking evacuated CPC collectors show a better performance with an increase in the thermal efficiency of up to 14% compared with an identical stationary collector.

Finite Element Analysis of Powdered Magnet Sinter-Forging Processes Considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 소결단조 성형공정의 유한요소 해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.478-484
    • /
    • 2001
  • Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of magnet powder. This process claims that it can accomplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses a deformable copper tube for densification of magnet powder. In this paper, simulation has been carried out for tile Tube Process in a closed die considering the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an important role in the stage of preform design.

  • PDF

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

Development of a Computer Program for Thermal Sizing of a Copper Bonded Steam Generator (구리밀봉 증기발생기의 열적크기 계산을 위한 프로그램 개발)

  • 김의광;김연식;어재혁;김성오;백병준
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.84-92
    • /
    • 2003
  • A one-dimensional thermal-hydraulic analysis computer program is developed for thermal sizing of a copper bonded steam generator. It is assumed that the conduction heat transfer of copper region between the hot side and the cold side tube is one-dimensional and its thermal resistance is derived as a function of a tube pitch. The flow regions of the water/steam side are divided into four regions: subcooled, saturated, film boiling, and super-heated. The number of tube selected ranges from 250 to 3500 and the pitch to tube diameter (P/D) ratios are 1.4, 1.6 and 1.8 for the parametric study calculation. The calculation results showed that when the number of tube was 2500, the length of the heating tube was about 12 m and the outside diameter of the steam generator was about 3 m. If the P/D ratio increases, the thermal resistance of copper component also increases, however the length of the heating tube is not so much increased.

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite (일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구)

  • 백영민;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF

Investigation on Causes of Pitting Corrosion in Sprinkler Copper Tubes (스프링클러 동배관의 공식부식 발생원인)

  • Lee, Jae-Bong;Jung, Hoseok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2014
  • Copper metal is widely used in tubes installed in sprinkler water services because of its excellent corrosion resistance. Copper corrosion is considered to be insignificant in water system and the incident of copper pipeline failure is relatively low. However, pitting corrosion is a major problem with all copper tubes. In this study, leaked sprinkler copper tubes were collected from three different locations and examined on the causes of pitting corrosion of copper tubes in sprinkler water plumbing systems. Electrochemical tests such as potentiodynamic polarization, as well as surface and chemical analyses were performed. Results show that pitting corrosion of copper tubes were found as Type I pitting that the carbon film formed on the copper tubes have a harmful effects, causing the pinhole failure in the pipe and resulting in leakage of water. The contermeasures on Type I pitting corrosion of copper tubes were proposed.

Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger (핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향)

  • Lee, Sang-Mu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.