• Title/Summary/Keyword: Copper-salt

Search Result 93, Processing Time 0.029 seconds

PHASE TRANSITIONS AND ELECTROCHEMICAL CORROSION BEHAVIORS OF Ti50Ni50-xCux SHAPE MEMORY ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;SANGHYUN RHO
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1303-1306
    • /
    • 2020
  • TiNi alloys have excellent shape memory properties and corrosion resistance as well as high biocompatibility. This study investigated the effects of copper addition on the phase transitions and electrochemical corrosion behaviors of Ti50Ni50-xCux alloys. TiNi, Ti50Ni47Cu3, Ti50Ni44Cu6, and Ti50Ni41Cu9 alloys were prepared using vacuum arc remelting followed by 4 h homogenization at 950℃. Differential scanning calorimetry and X-ray diffraction analyses were conducted. The corrosion behaviors of the alloys were evaluated using potentiodynamic polarization test in Hank's balanced salt solution at a temperature of 36.5 ± 1℃. The TiNi alloy showed phase transitions from the cubic B2 phase to the monoclinic B19' phase when the alloy was thermally cycled. The addition of copper to the TiNi alloy played a major role in stabilizing the orthorhombic B19 phases during the phase transitions of Ti50Ni50-xCux alloys. The shifts in the corrosion potential toward the positive zone and the low corrosion current density were affected by the amount of Cu added. The corrosion resistance of the TiNi alloy increased with increasing copper content.

The behavior of corrosion potential in the mortar-embedded (부식된 철근을 사용한 모르타르의 환경에 따른 부식전위의 거동)

  • 이상호;한정섭;권순석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.103-108
    • /
    • 1996
  • To syudy the change of prtential in the mortar-embedded precorroded rebar, a half cell method was adapted. The rebar was corroded by the salt spray and then the rebar embedded in the mortar. A saturated copper sulfate feference electrode was used. The corrosion potential of the rebar in the mortar specimen cured in air was increased, whereas that of the rebar cured in water was decreased with aging. The corrosion potential of the rebar in the mortar was decreased with corroded time by the salt spray. As the mortar thickness covered the rebar was increased, the corrosion potential of the rebar in the mortar was increased.

  • PDF

Synthesis and Characterization of 14-Membered Tetraaza Macrocycles with N-Ethyl Groups and their Nickel(Ⅱ) and Copper(Ⅱ) Complexes

  • Kang Shin-Geol;Kweon Jae Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.256-259
    • /
    • 1992
  • The 14-membered tetraaza macrocyclic ligand 1,8-diethyl-5,12-dimethyl-1,4,8,11-tetraazacyclote tradeca-4,11-diene(B) can be synthesized as its dihydroperchlorate salt by the one-pot reaction of 2-ethylaminoethylamine, methylvinyl ketone, and perchloric acid in absolute ethanol. The reaction of Ni(II) or Cu(II) ion and the salt yields $[M(B)]^{2+}$ (M = Ni(II) or Cu(II)), which reacts with $NaBH_4$ to produce $[M(D)]^{2+}$ (D = 1,8-diethyl-5,12-dimethyl-1,4,8,11-tetraazacyclote tradecane). The complexes $[M(L)]^{2+}$ (L = B or D) have planar geometry and contain two ethyl groups at the donor nitrogen atoms of the ligands. The red solids $[Cu(B)](X)_2(X)$ = $ClO_4-$ or $PF_6^-$) react with water molecules of atmospheric moisture to produce the purple solids in which water molecules are coordinated to the metal ion. Synthesis, characterization, and the properties of the new N-ethylated macrocyclic ligands and their Ni(II) and Cu(II) complexes are reported.

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

Spectrophotometric determination of acetylsalicylic acid with copper-$\alpha$-picolin complex in tetrachloromethane ($\alpha$-picolin동에 의한 aspirin의 용매 흡광도 정량법)

  • 백남호;박만기
    • YAKHAK HOEJI
    • /
    • v.13 no.2_3
    • /
    • pp.80-83
    • /
    • 1969
  • Acetylsalicylic acid gives a water-insoluble violet complex with $<\alpha>$-Picolin-Cu(II) reagent. The Complex is extractable well with a mixture of $<\alpha>$-Picolin-tetrachloromethane solution. The Complex salt dissolved in the mixed solution shows a maximum absorption at 620 m$<\mu>$. It has a melting point at $171^{\circ}C-$173^{\circ}C and molar ratio of Acetylsalicylic acid: Cu(II): $<\alpha>$-Picolin was estimated as 2:1:2 by continuous variation method and chelate titration method.

  • PDF

Conditions of Quantitative Analysis for free Amino Acid in Fermented Proteins (발효단백질의 유리아미노산 정량)

  • Ryu, Hong-Soo;Moon, Jung-Hye;Lee, Kang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.2
    • /
    • pp.136-143
    • /
    • 1988
  • This study was performed to provide the optimal conditions of quantitative analysis for free amino acid in fermented protein foods. The water extractable free amino acid from dairy fermented foods was extracted effectively at $75^{\circ}C$ for 40 min., while it were extracted from fermented soy products at $40^{\circ}C$ for 3 hours. A close results of free amino acid content to those from amino acid analyzer were obtained using OPDA method with lysine standard after deproteinizing with 1% picric acid. 95% ethanol used as a deproteinizing reagent could give a comparable results to those from picric acid treatment in determining free amino acid content using OPDA method. Therefore, ethanol treatment was more recommendable than picric acid treatment which has some troubles in removing excess picric acid through Dowex resin column. The most desirable precipitation method for free amino acid determination using TNBS method was 95% ethanol treatment among the various deproteinizing procedure. The copper salt method was not suitable owing to its lacking reproducibility and pronounced discrepancy in determining free amino acid.

  • PDF

Water Layer in Course of Corrosion of Copper in Humid Air Containing $SO_2$

  • Sasaki, Takeshi;Itoh, Jun;Ohtsuka, Toshiaki
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The technique for in situ simultaneous measurements of IR-RAS and QCM, which has been developed for investigation of corrosion in gaseous environments, was employed to study the effects of an extremely thin water layer on the corrosion rate. An evaporated copper film on a QCM element was exposed to air containing water vapor and $SO_2$, and time-resolved IR-RAS spectra were measured and mass gains were simultaneously followed with QCM. The tested ranges of relative humidity (RH) and concentration of $SO_2$ were 60% - 90% and 1 - 20 ppm, respectively. On the basis of 2D-IR analysis, the corrosion products were determined to be Chevreul's salt ($CuSO_3Cu_2SO_3{\cdot}2H_2O$) and $CuSO_4{\cdot}5H_2O$. By constructing curves of the relations between band intensities of IR spectra and mass gains of QCM for the corrosion products, the time variations in each product were determined from spectral experiments on copper plates. The thicknesses of physically adsorbed water layers in course of the corrosion process were also determined from water band intensities. The results showed that the thickness of the physically adsorbed water layer increased with increase in RH, and it also increased with increase in accumulation of corrosion products. The latter is probably due to the capillary effect of the corrosion products.

Evaluations of corrosion resistance of Ni-Cr plated and Zn-plated Fe Substrates Using an Electrolytic Corrosion Test (전해부식시험을 이용한 니켈-크롬도금강판 및 아연도금강판의 내식성 비교평가시험)

  • Lee, Jae-Bong;Kim, Kyung-Wook;Park, Min-Woo;Song, Tae-Jun;Lee, Chae-Seung;Lee, Eui-Jong;Kim, Sang-Yeol
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • An Eectrolytic Corrosion(EC) test method was evaluated by the comparison with Copper Accelerated Acetic Salt Spray(CASS) and Neutral Salt Spray(SS) tests. Those methods were applied in order to evaluate corrosion resistance of Ni-Cr plated and Zn-plated Fe substrates. The correlations between results obtained by different test methods were investigated. Results showed that the electrochemical method such as the EC test method was superior to the conventional methods such as CASS and SS, in terms of the quantitative accuracy and the test-time span. Furthermore, the EC test method provided the useful means to estimate the initiation of corrosion of each layer by monitoring the rest potentials of the coated layers such as Ni, Cr, and Zn on Fe substrate. With regard to test time spans, the EC test provided the 78 times and 182 times faster results than the CASS test in cases of $Fe+5{\mu}m$ $Ni+0.5{\mu}m$ Cr and $Fe+20{\mu}m$ $Ni+0.5{\mu}m$ Cr respectively, while the EC test was 85 times faster results than the Salt Spray test in the case of $Fe+20g/m^2$ Zn. Therefore, the EC test can be the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as the SS test and the CASS.

A Study for Physical Properties and Corrosion for Metals after Softening of Wood (포화염수 삶음 처리가 목재의 물리적 특성 및 금속 부식에 미치는 영향)

  • Park, Jin Young;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.621-630
    • /
    • 2019
  • A woodblock softening process using saltwater was investigated in order to reduce the cracks and distortion caused by the woodblock-making process and to make the woodblock softer and sculpturing easier. Although anatomical studies of woodblocks have been ongoing for years, little work has been done on softening treatments using natural materials. Hence, the purpose of this paper is to investigate the change in the physical properties of wood treated with saturated brine and the effect of salt on metal nails found embedded in woodblocks. After boiling for twelve h each in water and saturated brine, the saltwater-boiled specimens have longer drying times than the water-boiled specimens. Further, it was observed that salt particles penetrated the cells in the wood. As a result of exposing the copper and iron nails, which were stuck in each specimen, to a high humidity environment, the weight of the saltwater-boiled specimens increased due to the hygroscopicity of the salt. Corrosion of the nails also occurred. This result is similar to the problem that appears on the edge of a woodblock. In conclusion, it was shown that salt in the wood cells affects the corrosion of metal embedded in the wood.

Efficacy of Wood Preservatives Formulated with Okara and Its Microscopic Analysis (두부비지 방부제의 방부효능 및 현미경적 분석)

  • Kim, Ho-Yong;Choi, In-Gyu;Ahn, Sye Hee;Oh, Sei Chang;Youn, Young Ho;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2009
  • As a substitute for CCA, which is inhibited due to its environmental pollution and human harmfulness, and CuAz and ACQ with a high cost, okara-based wood preservatives were formulated with okara hydrolyzates using copper sulfate and/or borax as a metal salt. The efficacy of the preservatives and X-ray microanalysis of wood specimens treated with the preservatives were examined to confirm the potential of the okara-based wood preservatives. Most of the preservatives showed excellent decay resistance against brown-rot fungi, Postia placenta and Gloeophyllum trabeum. The efficacy was improved when the acid concentration and temperature used for the hydrolysis of okara increased. In addition, when borax was added into copper sulfate/okara hydrolyzates preservative formulations, any decay was not found in the specimens. From the microscopic observation of the specimens treated with okara-based wood preservatives, it seems that okara is contributed to the fixing of metal salts in wood blocks. Therefore, it is speculated that okara-based wood preservatives can effectively protect wood against fungal attack as CuAz, and that the preservatives are sufficient to use as an alternative wood preservative of CCA, ACQ and CuAz.