• 제목/요약/키워드: Copper nitride

검색결과 46건 처리시간 0.032초

ECR plasma로 전처리된 Cu seed층 위에 전해도금 된 Cu 막에 대한 Annealing의 효과 (Effects of Post-deposition Annealing on the Copper Films Electrodeposited on the ECR Plasma Cleaned Copper Seed Layer)

  • 이한승;권덕렬;박현아;이종무
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.174-179
    • /
    • 2003
  • Thin copper films were grown by electrodeposition on copper seed layers which were grown by sputtering of an ultra-pure copper target on tantalum nitride-coated silicon wafers and subsequently, cleaned in ECR plasma. The copper films were then subjected to ⅰ) vacuum annealing, ⅱ) rapid thermal annealing (RTA) and ⅲ) rapid thermal nitriding (RTN) at various temperatures over different periods of time. XRD, SEM, AFM and resistivity measurements were done to ascertain the optimum heat treatment condition for obtaining film with minimum resistivity, predominantly (111)-oriented and smoother surface morphology. The as-deposited film has a resistivity of ∼6.3 $\mu$$\Omega$-cm and a relatively small intensity ratio of (111) and (200) peaks. With heat treatment, the resistivity decreases and the (111) peak becomes dominant, along with improved smoothness of the copper film. The optimum condition (with a resistivity of 1.98 $\mu$$\Omega$-cm) is suggested as the rapid thermal nitriding at 400oC for 120 sec.

초고집적 구리 배선을 위한 새로운 펄스 플라즈마 원자층 증착법을 이용한 텅스텐 나이트라이드 확산 방지막 ((Tungsten Nitride Diffusion Barrier with using New Pulse Plasma Atomic Layer Deposition for Ultra Large Scale Integration Copper Interconnection))

  • 박지호;심현상;김용태;김희준;장호정
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2004년도 추계 기술심포지움 초록집
    • /
    • pp.27-27
    • /
    • 2004
  • PDF

ALD법을 이용해 증착된 TaN 박막의 Cu 확산방지 특성 (Characteristics of TaN by Atomic Layer Deposition as a Copper Diffusion Barrier)

  • 나경일;허원녕;부성은;이정희
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.195-198
    • /
    • 2004
  • For a diffusion barrier against copper, tantalum nitride films have been deposited on $SiO_{2}$ by atomic layer deposition (ALD), using PEMAT(Pentakis(ethylmethylamino)tantalum) and $NH_{3}$ as precursors, Ar as purging gas. The deposition rate of TaN at substrate temperature $250^{\circ}C$ was about $0.67{\AA}$ per one cycle. The stability of TaN films as a Cu diffsion barrier was tested by thermal annealing for 30 minutes in $N_{2}$ ambient and characterized through XRD, sheet resistance, and C-V measurement(Cu($1000{\AA}$)/TaN($50{\AA}$)/$SiO_{2}$($2000{\AA}$)/Si capacitor fabricated), which prove the TaN film maintains the barrier properties Cu below $400^{\circ}C$.

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

Effects of metal dopant content on mechanical properties of Ti-Cu-N films

  • Hyun S. Myung;Lee, Hyuk M.;Kim, Sang S.;Jeon G. Han
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.37-37
    • /
    • 2001
  • TiN coatings were applied for VarIOUS application fields, because of a good wear-resistance and a high hardness. Typically, TiN thin films show the hardness of 25GPa and friction coefficient of 0.6. However, in many field, one is looking for a more improved tool which has low friction coefficient and high wear resistance. The main motivation of this study is to characterize the influence of copper dopant content on TiN thin films. Ti-Cu-N thin films were deposited onto D2 steel substrates by PVD processing with various magnetron current densities (Cu contents). In this work, we synthesized titanium nitride films similar with reported typical titanium nitride films and synthesized Ti-Cu-N thin films with the addition of elemental copper which is measured improved hardness more than pure TiN films with copper content variables. This films has preferred oriented films of (111) direction. In addition, It was found that there is a strong correlation between content of various metal and film characteristics such as preferred orientation, grain size, hardness and friction coefficient and so, in future study, improved mechanical properties of TiN films can be controlled by change in target current density. The Ti-Cu-N film will show apparent hardness improvement and mechanical properties enhancement, when doping element is added onto TiN thin films. Film structure, chemical composition, mechanical properties were investigated by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy(EDS), wear resistance tester and nanohardness tester.

  • PDF

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

초경합금과 강의 Brazing특성에 미치는 열처리의 영향 (Influence of Heat Treatment on Brazing Characteristics between Cemented Carbides and Steel)

  • 김하영;중촌 만;이상학
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.43-45
    • /
    • 2004
  • Brazing between cemented carbides and steel for tool investigated by copper alloy brazing filler. Copper alloy filler was high liquidus temperature($990^{\circ}C$), therefor the shank(steel) occurred softening. Because brazing sample was necessary to heat treatment after brazing process. This experiment, influence of austenite time and purge temperature on heat treatment were investigated. As a result, these treatments obtained to high deflective strength In case of austenite time was short and purge temperature was low. Especially, nitride precipitated brazing layers was strongly influenced by the deflective strength.

  • PDF

열처리에 따른 Cu 전해도금막의 미세구조 및 물리적성질 변화 (The Microstructure and physical properties of electroplated Cu films)

  • 권덕렬;박현아;김충모;이종무
    • 한국진공학회지
    • /
    • 제13권2호
    • /
    • pp.72-78
    • /
    • 2004
  • TaN막 위에 magnetron sputtering으로 증착 시킨 Cu seed 막을 Cu 전해도금을 하기에 앞서 ECR plasma 장치로 전처리 세정하였다. 이때 Cu 막을 200∼$500^{\circ}C$로 변화시키면서 알곤 또는 질소 분위기에서 RTA(rapid themal annealing) 방법으로 열처리하였다. Cu seed 막 위에 전해도금법으로 형성한 Cu 막을 열처리했을 때 미세구조와 물리적 특성변화를 XRD(x-ray diffraction), EBSD(electron back-scattered diffraction), AFM(atomic force microscopy) 분석을 이용하여 조사하였다. $400^{\circ}C$보다 높은 온도에서 재결정이 일어났으며, 열처리 온도를 증가함에 따라 Cu막의 비저항이 감소하고 (111) 우선배향성이 증가하는 경향을 나타냈다. 최소의 비저항과 부드러운 표면 및 (111) 배향성이 뛰어난 Cu막을 얻기 위한 최적의 열처리 조건은 $400^{\circ}C$의 질소분위기에서 120초간 RTA처리를 하는 것으로 판단된다. 이 조건하에서 전해도금된 Cu막의 비저항(resistivity)과 표면 거칠기(surface roughness)는 각각 1.98$\mu$O-cm 및 17.77nm였다.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • 박재형;한동석;문대용;윤돈규;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF