• Title/Summary/Keyword: Copper matrix

Search Result 141, Processing Time 0.023 seconds

Frictional behaviour of epoxy reinforced copper wires composites

  • Ahmed, Rehab I.;Moustafa, Moustafa M.;Talaat, Ashraf M.;Ali, Waheed Y.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.165-178
    • /
    • 2015
  • Friction coefficient of epoxy metal matrix composites were investigated. The main objective was to increase the friction coefficient through rubber sole sliding against the epoxy floor coating providing appropriate level of resistance. This was to avoid the excessive movement and slip accidents. Epoxy metal matrix composites were reinforced by different copper wire diameters. The epoxy metal matrix composites were experimentally conducted at different conditions namely dry, water and detergent wetted sliding, were the friction coefficient increased as the number of wires increased. When the wires were closer to the sliding surface, the friction coefficient was found to increase. The friction coefficient was found to increase with the increase of the copper wire diameter in epoxy metal matrix composites. This behavior was attributed to the fact that as the diameter and the number of wires increased, the intensity of the electric field, generated from electric static charge increased causing an adhesion increase between the two sliding surfaces. At water wetted sliding conditions, the effect of changing number of wires on friction coefficient was less than the effect of wire diameter. The presence of water and detergent on the sliding surfaces decreased friction coefficient compared to the dry sliding. When the surfaces were detergent wetted, the friction coefficient values were found to be lower than that observed when sliding in water or dry condition.

TiB2-Cu Interpenetrating Phase Composites Produced by Spark-plasma Sintering

  • Kwon, Young-Soon;V. Dudina, Dina;I. Lomovsky, Oleg;A. Korchagin, Michail;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.168-171
    • /
    • 2003
  • Interpenetrating phase composites of $TiB_2$-Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.

Analytic study on lead and cadmium in copper contained carbon materials (구리를 함유한 탄소소재의 납 및 카드뮴 분석에 관한 연구)

  • Choi, Zel-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.307-313
    • /
    • 2010
  • Quantitative analytical condition for lead and cadmium in copper contained carbon materials using solvent extraction followed by inductively coupled plasma-atomic emission spectrometry was studied. Copper contained carbon samples were dissolved by nitric acid-perchloric acid digestion. Lead and cadmium were determined after separation with KCN masked copper by an dithizone-chloroform solvent extraction. Recovery efficiency of analyte elements was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Lead and cadmium were quantitatively determined without influence of sample matrix, by applying it procedure to artifact sample.

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

A Study of Copper Production Techniques at the Archaeological Site in Gwanbukri, Buyeo in the 6th and 7th Centuries (6~7C 부여 관북리 유적의 동 생산기법 연구)

  • Lee, Ga Young;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Research was conducted to characterize the copper production and smelting process with 11 copper smelting by-products (copper slag and copper crucible) excavated from the NA and LA areas at the Gwanbuk-ri archeological site in Buyeo. Scanning electron microscopy-energy dispersive spectroscopy, wavelength dispersive X-ray fluorescence, X-ray diffraction, and Raman microspectroscopy were employed in the analysis. The research results reveal that the copper slag from Gwanbuk-ri contained silicate oxide, magnetite, fayalite, and delafossite, which are typical characteristics of crucible slag and refined slag. The outward appearance and microstructure of the slag were grouped as follows: 1. glassy matrix + Cu prill, 2. glassy matrix + Cu prill + magnetite, 3. silicate mineral matrix + Cu prill, 4. crystalline (delafossite and magnetite) + amorphous (Cu prill), 5. magnetite + fayalite, and 6. slag from slag. The copper slags from Guanbuk-ri were found to contain residues of impurities such as SiO2, Al2O3, CaO, SO4, P2O5, Ag2O, and Sb2O3 in their microstructure, and, in some cases, it was confirmed that copper, tin and lead are alloys. These results indicate that refining of intermediate copper(including impurities) and refining of alloys of copper(including impurities) - tin and refining of copper(including impurities) - tin - lead took place during the copper production process at Gwanbuk-ri, Buyeo.

Effects on Copper Addition on the Microstructure of Compacted Vermicular Graphite Cast Iron (C/V 흑연주철의 미세조직에 미치는 Cu 첨가의 영향)

  • Park, Heung-Il;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.6 no.4
    • /
    • pp.277-283
    • /
    • 1986
  • The effects of copper as an alloying element on the microstructure of Compacted Vermicular graphite cast iron which was treated with Mg-REM spheroidizer have been studied. With the increase of copper content up to 2.0wt.%, the following results were obtained; First, the ratio of residual magnesium content in the as-cast iron has been found to be increased, possibly due to the decrease of sulfur content in the melt. Thus, the morphology of graphite in the as-cast iron has been found to be more nodular type. Second, the proportion of pearlite in the matrix has been found to he increased, however the matrix being with free carbide precipitates in the copper range of 1.2wt.% to 2.0wt.%. Third, the tensile strength of the as-cast iron in the temperature up to $400^{\circ}C$ was increased.

  • PDF

The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite (일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구)

  • 백영민;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF

Copper Oxide-Modified Polymeric Composite Elecrodes for Amperometric Detection of Carbohydrates in LCEC Analysis

  • 정혜경;박종만
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.952-957
    • /
    • 1997
  • Modified polymeric composite electrodes having highly dispersed CuO particles through the electrode matrix were prepared for LCEC or flow injection analysis of carbohydrates. The composite electrodes were prepared by incorporating carbon black and highly dispersed copper oxide particles in polystyrene matrix cross-linked with divinylbenzene. The analytical characteristics of the electrodes for LCEC and flow injection analysis of carbohydrates were evaluated. Improved performance in LCEC and flow injection analysis of carbohydrates is demonstrated in terms of sensitivity, reproducibility, stability and surface renewability. It was possible to get improved performance of the electrodes as well as adaptability of the electrodes for practical applications by employing highly dispersed catalyst particles through the electrode matrix and robust polymeric electrode matrix.

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.