• Title/Summary/Keyword: Copper current collector

Search Result 15, Processing Time 0.1 seconds

A Study on the Wearing Phenomenon Analysis of Pantograph Slider for the Subway Cars (전동차 판토그라프 주습판 마모 현상분석에 관한 연구)

  • Kim, Young-Gyu;Kwon, Seok-Jin;Won, Si-Tae;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.389-395
    • /
    • 2010
  • This paper is about the copper slider with high electric conductivity and resistance arc. A new copper slider which has enhanced resistance against frictional wear was developed. By alteration of its material components and manufacturing process, its material property has been enhanced. To verify its enhanced wear-resisting capacity, a laboratory test and a field test were carried out. As the laboratory test, a dynamo test was performed and its test result showed that the developed new copper slider had superior wear-resisting capacity to the currently used copper slider. The new one showed double durability of the current one and normal wearing characteristics. A filed test was performed on the Metro subway lines at service by Seoul Metro. The field test showed similar results to those from the laboratory test, which the d eveloped new copper slider has double superior durability and sound wearing patterns. Authors strongly believe that the replacement of the copper slider currently in use by the developed new one will contribute to the economic and efficient operation of the subway line system

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

Experimental performance investigation of compound parabolic cavity receiver having single absorber tube

  • Omar Al-Nabhani;Saud Al-Kalbani;Azzam Al-Alawi;Afzal Husain
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The current study presents experimental research on a parabolic trough collector with tube and cavity receivers. The primary concentrating parabolic reflector is designed for an aperture area of 2×2 m2 with mirror-polished stainless steel sheet reflectors. The cavity receiver consists of a compound parabolic secondary reflector and a copper tube. Both the conventional tube receiver and the cavity receiver tube are coated with black powder. The experiments are carried out to compare the efficiency of the cavity receiver with the tube receiver for fluid temperature rise, thermal efficiency, and overall losses. The experiments showed significantly higher fluid temperature rise and overall efficiency and lower thermal losses for the cavity receiver compared to the tube receiver within the parameters explored in this study.

Thermal Stability of Delithiated LiCoO2-organic Electrolyte for Lithium-Ion Rechargeable Batteries (리튬이온이차전지용 LiCoO2-유기전해액의 충전상태에 따른 열적 안정성)

  • Kim, Dong-Hun;Lee, Young-Ho;Shin, Hye-Min;Chung, Young-Dong;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Oh, Dae-Hui;Kim, Ki-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.421-424
    • /
    • 2007
  • Thermal behavior of $Li_{1-x}CoO_2$ has been investigated employing DSC (Differential Scanning calorimetry) and TGA (Thermogravimetry Analyzer), and the crystal parameters were calculated from XRD (X-ray diffraction).for the commercial rectangular pouch cell(1000 mAh).The cathode materials coated over aluminium foil current collector is made up of a blend consisting of active material $LiCoO_2$(size $20\;{\mu}m$, 94 wt%), conducting material super p black (SPB, 3 wt%) and binder polyvinylidene fluoride (PVDF, 3 wt%). The anode is a mix consisting of carbon (92 wt%) and PVDF(8 wt%) coated over copper foil. The cells for the experiments were first preconditioned by cycling three times and stabilized at OCV=3.0, 3.5, 4.2, 4.35 and 4.5 V. The stabilized cathode material was used for thermal and crystal parameter investigations.

Study of Air-Breathing Polymer Electrolyte Membrane Fuel Cell Using Metal-Coated Polycarbonate as a Material for Bipolar Plates (도금된 폴리카보네이트 분리판을 이용한 공기 호흡형 고분자 전해질막 연료전지에 관한 연구)

  • Park, Taehyun;Lee, Yoon Ho;Chang, Ikwhang;Ji, Sanghoon;Paek, Jun Yeol;Cha, Suk Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.155-161
    • /
    • 2013
  • In this study, a metal-plated polycarbonate was adopted as a material for bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The coated layers included 40-${\mu}m$-thick copper, 10-${\mu}m$-thick nickel, and 0.3-${\mu}m$-thick gold that respectively played the roles of current conduction, adhesion between copper and gold, and minimization of surface corrosion. The maximum power of the air-breathing PEMFC with polycarbonate bipolar plates was $120mW/cm^2$, which was similar to that of graphite bipolar plates. Finally, the maximum power of a 12-cell stack of polycarbonate bipolar plates was $132.7mW/cm^2$, and it had an operating time of 12 h. Therefore, this was considered a suitable material for bipolar plates in PEMFCs.