• 제목/요약/키워드: Copper cross sections

검색결과 14건 처리시간 0.02초

3차원 Si칩 실장을 위한 경사벽 TSV의 Cu 고속 충전 (High Speed Cu Filling into Tapered TSV for 3-dimensional Si Chip Stacking)

  • 김인락;홍성철;정재필
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.388-394
    • /
    • 2011
  • High speed copper filling into TSV (through-silicon-via) for three dimensional stacking of Si chips was investigated. For this study, a tapered via was prepared on a Si wafer by the DRIE (deep reactive ion etching) process. The via had a diameter of 37${\mu}m$ at the via opening, and 32${\mu}m$ at the via bottom, respectively and a depth of 70${\mu}m$. $SiO_2$, Ti, and Au layers were coated as functional layers on the via wall. In order to increase the filling ratio of Cu into the via, a PPR (periodic pulse reverse) wave current was applied to the Si chip during electroplating, and a PR (pulse reverse) wave current was applied for comparison. After Cu filling, the cross sections of the vias was observed by FE-SEM (field emission scanning electron microscopy). The experimental results show that the tapered via was filled to 100% at -5.85 mA/$cm^2$ for 60 min of plating by PPR wave current. The filling ratio into the tapered via by the PPR current was 2.5 times higher than that of a straight via by PR current. The tapered via by the PPR electroplating process was confirmed to be effective to fill the TSV in a short time.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

도로 융설체 개발을 위한 탄소나노튜브-시멘트 복합체 특성에 관한 실험적 연구 (A Feasibility Study on Developing Snow Melting Systems using CNT-Cement Composite)

  • 허진녕;박범진;김태형
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.29-37
    • /
    • 2013
  • PURPOSES : This study aims to review the possibility of developing a road snow-melting system that can prevent slip accidents by maintaining a constant temperature of the winter roads and enhance performance of structures, including improvement of compressive strength by mixing carbon nanotube (hereafter referred to as CNT) with cement paste, the basic material. METHODS : To achieve the above purpose, an experiment was conducted by mixing power-type CNT and wrap-type CNT up to cement paste formulation by weight of 0.0wt%~4.1wt% in accordance with "KS L ISO 679(of cement strength test method)", and compressive strength was measured at 28 days of curing. In addition, the volume resistivity of the specimen was measured to test thermal and electrical characteristics, and the rate of temperature changes in specimen surface by power consumption was measured by passing electricity through the cross-sections of the specimen. Meanwhile, the criteria for checking the performance as a road snow-melting system was determined as volume resistivity of $100{\Omega}{\cdot}cm$ or less. RESULTS : A comparative analysis between specimen with 0wt% CNT content in plain status and specimen containing various types of CNTs was carried out. From its results, it was found that compressive strength increased approximately 19%, showing the highest rate when 0.2wt% of wrap-type CNT was contained, but volume resistivity of $100{\Omega}{\cdot}cm$ or less appeared only in specimens containing more than 0.2wt% CNT. In addition, it was observed that the surface temperature increased by $4.62^{\circ}C$ per minute on average in specimens containing 3.2wt% CNT. CONCLUSIONS : In this study, CNT was examined as an underlying material for a road snow-melting system, and the possibility of developing the road now-melting system was reviewed by conducting various experiments using CNT-Cement composites. From the experimental results, the specimens were found to have a superior performance when compared to the existing road snow-melting systems that place the heat transfer medium such as copper on the road. However, satisfactory strength performance were not obtained from the specimen containing CNT(2.0% or more) that functions as a heating element, which leads to the need for reviewing methods to increase the strength by using plasticizer or admixture.

세종 합강리 유적 출토 고대 유리구슬의 특성 연구 (A Characteristics on the Ancient Glass Beads Excavated from the Site of Hapgang-ri in Sejong, Korea)

  • 김은아;김규호;강지원;윤천수
    • 보존과학회지
    • /
    • 제36권5호
    • /
    • pp.405-420
    • /
    • 2020
  • 본 연구는 세종 합강리 유적을 중심으로 발굴 유적과 유물을 조사한 고고학적 접근과 주구토광묘 15호에서 유일하게 출토된 유리구슬의 표면, 단면, 조성 특성을 분석한 보존과학적 접근으로 구분하여 융합적 연구를 시도하였다. 묘의 형태와 출토유물을 통한 고고학적 연구에서 합강리 유적은 주구토광묘의 등장 시기가 2세기 후엽부터이고 유리구슬이 출토된 주구토광묘 15호 편년은 2세기 후엽~3세기 초엽으로 추정할 수 있다. 유리구슬 완형은 형태, 색상 및 제작기법을 파악하고 유리구슬편 16점은 단면관찰과 화학 조성을 분석한 결과에서 청색 계통은 감청색과 자색으로, 적색 계통은 적갈색으로 구분되며 세부 색상에서 청색 계통은 광택과 명도에 따라 다양하게 분포하나 적색 계통은 균일도가 높게 나타난다. 제작기법은 표면의 줄무늬와 기포배열에서 늘인기법으로 확인되며 구슬 양 끝부분에서 열처리나 연마 흔적도 관찰된다. 유리구슬 편 16점의 화학 조성은 포타쉬유리군 3점과 소다유리군 13점으로 분류된다. 소다유리군 13점에 대한 안정제 특성은 청색과 적색 계통에 따라 구분된다. 이중에서 적색 계통의 안정제 특성은 지금까지 다른 지역에서 확인된 적갈색 유리구슬과 다른 조성으로 구분되는 점이 특이하다. 착색제는 청색 계통이 MnO 성분을 함유한 코발트(Co), 그리고 적색 계통은 구리(Cu)와 철(Fe)이다.