• Title/Summary/Keyword: Copper Rotor

Search Result 56, Processing Time 0.023 seconds

Analysis of Microstructures and Defects of the Thixoformed Cu rotor for High Efficiency Electrical Motors (반응고 성형법에 의해 제조된 고효율 전동기용 Cu-Rotor의 미세조직 및 결함 분석)

  • 강병무;서동우;손근용;이상용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.55-59
    • /
    • 2003
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve efficiency of induction motors, however, it is desirable that pure aluminum is replaced by high electrical conductivity copper alloy. For this purpose, a rotor is thixoformed with Cu-Ca alloy. Thermomechanical processing(TMP) is carried out to modify the semi-solid microstructure of the alloy and final microstructures and filling defects of thixoformed Cu- rotors are investigated. The characteristics of thixoformed Cu-rotor such as motor efficiency and torque are compared with those of Al rotor.

  • PDF

Analysis of the Copper Loss Distribution in the Rotor Bar of an Inverter-Fed Induction Motor (인버터 구동 유도전동기의 회전자 바에서의 동손 분포 해석)

  • Kim, B.T.;Kwon, B.I.;Park, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.73-75
    • /
    • 1999
  • The time harmonics of an inverter output voltage cause high frequency currents in the rotor bars of a squirrel cage induction motor, so that the harmonic copper loss density increases in the upper lesion of the bars. Such an higher loss density makes an nonuniform thermal source and deforms the bars due to the thermal stress. Therefore, in this paper, the copper loss distribution in the rotor bar of an inverter-fed induction motor, which is the source of the thermal stress, is analyzed by the time-stepping finite element method. As a result, the harmonic copper losses of 11 subregions in a bar are calculated and compared with those of sinusoidally fed induction motor.

  • PDF

Unbalance Response Analysis of Copper Die Casting High Speed Induction Motor (동 다이캐스팅 고속 유도전동기의 불평형 응답 해석)

  • Hong, Do-Kwan;Jung, Seung-Wook;Woo, Byung-Chul;Koo, Dae-Hyun;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.642-649
    • /
    • 2012
  • This paper deals with a copper die casting induction motor which has several advantages of motor performance. The developed motor is used as spindle motor in machining center. The dynamic characteristic analysis of rotor is dealt with for precision machining. The critical speed of rotor considering rotation and gyroscopic effect should be above operating speed, 18,000 rpm, and have a 201 % sufficient separation margin. Also, the 3-D unbalance vibration response analysis is performed and enabled the prediction of the expected vibration amplitude by unbalance in high speed. The unbalance vibration responses of each position on the rotor are satisfied with allowable vibration displacement of API 611 standard according to balancing G grade(G 0.4, G 2.5, G 6.3). Copper die casting high speed induction motor is successfully developed and verified by experiment.

The Development of AC Traction Motor by AI-Diecasting Process for LRV (AI-Diecasting 공법을 적용한 경전철용 AC 견인전동기 개발)

  • Lee, J.I.;Park, J.T.;Lee, J.I.;Kwon, J.L.;Woo, J.Y.;Jo, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1006-1008
    • /
    • 2000
  • In this material, a traction motor for light railway vehicle was developed. Aluminium -Diecasting process was selected in order to reduce the manufacturing cost of making rotor bars and rotor rings of the motor, instead of copper or copper alloy rotor bars and rotor rings. And the results of experiment satisfied the international standard IEC 349-2.

  • PDF

On-Line Detection of Shorted Turn in Generator Rotor Windings (발전기 회전자 권선의 운전중 층간단락 탐지)

  • Kim, Hui-Dong;Lee, Yeong-Jun;Park, Jong-Jeong;Ju, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 1999
  • During start up and shut down, the generator is rotating at a low speed and copper dusts cause arcing between the turns in the slot. Shorted turns occurred primarily by the movement of these copper dusts between individual windings in the generator rotor. Detection of shorted turns was performed in five gas turbine generators in two combined cycle power plants. Two types of permanent and temporary flux probes were used in this paper. These flux probes have been used to develop a methodology for detecting shorted turns in an operating generator's rotor. The flux probes sense the rotor winding slot leakage flux and produce a voltage proportional to the rate of change of the flux. This pattern of flux variation is the signature unique to each rotor winding. An appropriate waveform analysis technique canidentify the pole location, the slot number, and the number of shorted turns within each slot. Shorted turns in field winding of gas turbine generator(125.7 MVA) were detected to twelve turns on al total 190 turns.

  • PDF

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

  • Lee, Choong-Sung;Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • 48-V ISG (Integrated Starter Generator) system has attracted attention to improve the fuel efficiency of ICE (Internal Combustion Engine) vehicle. One of the key components that significantly affects the cost and performance of the 48-V ISG system is the motor. In an ISG motor, the core and copper loss make the motor efficiency change because the motor has a broad driving operated range and more diverse driving modes compared with other motors. When designing an ISG motor, the selection of an electrical steel sheet is important, because the electrical steel sheet directly influences the efficiency of the motor. In this paper, the efficiency of the ISG motor, considering core loss and copper loss, is analyzed by testing different types of electrical steel sheets with respect to the driving speed range and mode. Using the results of a finite element method (FEM) analysis, a method to select the electrical steel sheet is proposed. This method considers the cost of the steel sheet and the efficiency according to driving mode frequency during the design process of the motor. A wound rotor synchronous machine (WRSM) was applied to the ISG motor in this study.

An Optimal Current Distribution Method of Dual-Rotor BLDC Machines

  • Kim, Sung-Jung;Park, Je-Wook;Im, Won-Sang;Jung, Hyun-Woo;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.250-255
    • /
    • 2013
  • This paper proposes an optimal current distribution method of dual-rotor brushless DC machines (DR-BLDCMs) which have inner and outer surface-mounted permanent-magnet rotors. The DR-BLDCM has high power density and high torque density compare to the conventional single rotor BLDCM. To drive the DR-BLDCM, dual 3-phase PWM inverters are required to excite the currents of a dual stator of the DR-BLDCM and an optimal current distribution algorithm is also needed to enhance the system efficiency. In this paper, the copper loss and the switching loss of a DR-BLDCM drive system are analyzed according to the motor parameters and the switching frequency. Moreover, the optimal current distribution method is proposed to minimize the total electrical loss. The validity of the proposed method was verified through several experiments.

Characteristics Analysis of a Novel Segmental Rotor Axial Field Switched Reluctance Motor with Single Teeth Winding

  • Wang, Bo;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.852-858
    • /
    • 2014
  • A novel 12/10 axial field switched reluctance motor (AF-SRM) is proposed for cooling fan applications in this paper. Unlike from conventional structures, the proposed motor uses the axial field instead of the radio field, the rotor is constructed from a series of discrete segments, and the stator poles are constructed from two types of stator poles: exciting and auxiliary poles. This concept improves the torque capability of a previous design by reducing the copper volume, which leads to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

Process Control and Thixoforming of Cu Rotor for High Efficiency Motors (고효율 전동기용 Cu Rotor의 반응고 성형과 공정변수 제어)

  • Jung, W. S.;Lee, S. Y.;Shin, P. W.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.642-648
    • /
    • 2005
  • Rotor in small-medium induction motor has been usually manufactured by aluminum diecasting. In order to improve the efficiency of induction motors, newly developed Cu-Ca alloys have been investigated. The electrical conductivity in the Cu alloys containing Ca less than $1.0wt\%$ was higher than $80\%$ IACS. Cu-Ca alloy is desirable for the thixoforming process because it has wide semi-solid range over $150^{\circ}C$. In this study, Cu-rotor with thixoforming process was developed to replace the conventional aluminum diecasting rotor. Analysis was performed for the microstructure of thixoforming rotor. Effect of incomplete filling on the efficiency of induction motor was discussed.