• Title/Summary/Keyword: Copper (II) chloride

Search Result 48, Processing Time 0.02 seconds

Type Classification and Material Properties by the Composition of Components in Gold Earrings Excavated from the Yeongnam Region (영남지역 출토 금제 귀걸이의 성분 조성에 따른 유형 분류와 금속 재료 특성)

  • Jeon, Ikhwan;Kang, Jungmoo;Lee, Jaesung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.4-21
    • /
    • 2019
  • In this paper, 23 Silla gold earrings from the sixth and seventhand centuries, excavated from the Yeongnam region, were analyzed. Based on the silver content of the gold plate, they were classified into three types. The classifications included type I(20-50wt%), type II(10-20wt%) and type III (less than 10wt%). In the analysis process, the composition and morphological differences were identified on the surface of the gold plate. In the case of type I and II earrings, it was observed that the fine holes were concentrated in a relatively higher part of the gold content. The causes of the difference in the surface composition of the gold plate were divided into four categories: 1) surface treatment, 2) thermal diffusivity in the manufacturing process, 3) differences in composition of alluvial gold, and 4) the refining method of gold. It is possible that depletion gilding was attempted to increase the gold content while intentionally removing the other metals from the surface of the gold alloy in the portion where the gold deposit is relatively concentrated on the surface of the gold plating. The highest copper content was detected in the earring with the highest gold content of the analyzed earrings, and it was assumed that thermal diffusion had occurred between the gold plate and the metal rod during the manufacturing process rather than intentional addition. Copper was detected only in the thin ring earring type, and copper was not detected in the thick ring earring type or pendant type. It also proves that this earring has a high degree of tightness at higher temperatures, as there was an invisible edge finish on other earrings and horizontal wrinkles on the gold plate surface. In terms of the material of the gold plate, we examined whether the silver content of the gold plate was natural gold or added by alloy through analyzing the alluvial gold collected in the region. As a result of the analysis, it was found that on average about 13wt% of silver is included. This suggests that type II is natural gold, type III is refined gold, and type I seems to have been alloyed with natural gold. Here, we investigated the refining method introduced in the ancient literature, both at home and abroad, about the possibility of alloying silver after the refining process of type III earrings and then making pure gold. It was found that from ancient refining methods, silver which had been present in the natural gold was removed by reacting and combining with silver chloride or silver sulfide, and long-term efforts and techniques were required to obtain pure gold through this method. Therefore, it was concluded that the possibility of adding a small amount of silver in order to increase strength after making pure gold through a refining process is low.

Dyeing Properties and Ultraviolet-cut Ability of Dyed Fabrics with Petasites japonicus Extract (머위 추출액에 의한 직물의 염색성과 자외선 차단성)

  • Choi, In-Ryu;Joen, Mi-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.1
    • /
    • pp.96-103
    • /
    • 2011
  • It is well known that the Petasites japonicus has been used for a long time medicine for the treatment of allergic diseases such as lacquer poisoning. However, the exact components and dyeing properties of its effects is still not known. Therefore, the purpose of this study was to investigate the dyeing property and ultraviolet-cut ability of silk and nylon fabrics that was dyed variously with the Petasites japonicus. The Petasites japonicus extract was done by boiling with distilled water at $100^{\circ}C$ for 1 hour. As mordanting agent, we used Aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$), Copper(II) sulfate pentahydrate ($CuSO_5{\cdot}5H_2O$), Iron(II)Chloride ($FeCl_2{\cdot}4H_2O$). The best K/S value of dyeing temperature and time, all the fabrics were $100^{\circ}C$, 90min. Silk fabric was dyed yellow(0.8Y 7.6/2.2) and nylon fabric was dyed reddish yellow(10.1 YR 7.4/3.0). Silk fabric and nylon fabric was changed greenish yellow on mordanting with $CuSO_5{\cdot}5H_2O$ and $FeCl_2{\cdot}4H_2O$ respectively. And the colorfastness of washing and dry-cleaning was improved by using mordanting agent(4~5 grade). Ultraviolet-cut ability(UV-B) was showed more 90% in dyed nylon fabrics.

Synthesis, Stability Constants, X-ray Structure and Electrochemical Studies of Copper (II) 1, 14-Bis (2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane.tetrahydrochloride Complex (1, 14-Bis(2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane.tetrahydro-chloride 구리착물의 합성, 안정도상수, X-ray 구조 및 전기화학적 연구)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Kim, Seong-Yun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2000
  • A new open-chain ligand containing two phenol groups, 1, 14-Bis (2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane(bsated) was synthesized as its tetrahydrochloride salt and characterized by elemental analysis, mass, infrared and NMR. Its proton dissociation constants ($logK^n{_H}$) and stability constants ($logK_{ML}$) toward $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$ and $Zn^{2+}$ were determined at $25^{\circ}C$ and 0.10M($KNO_3$) ionic strength in aqueous solution by potentiometry. The X-ray structure of its copper (II) complex [Cu(bsated)]$(ClO_4)_2$ was reported: Monoclinic space group $P2_1/n$, $a=17.856(4){\AA}$, $b=17.709(1){\AA}$, $c=8.539(2){\AA}$, $V=2700(2){\AA}$ with Z=4. Electrochemical studies of [Cu(bsated)]$(ClO_4)_2$ complex in dimethyl sulfoxide (DMSO) solution containing tetrabutylammonium perchlorate (supporting electrolyte) were carried out by cyclic voltammograms (CV) and normal pulse voltammetry (NPV).

  • PDF

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

Natural Dyeing Characteristics of Black Color to the Korean Traditional Hand-made Paper (Hanji) (천연염색 재료를 이용한 한지의 검정색 염색 특성)

  • Lee, Sang-Hyun;Yoo, Seung-Il;Choi, Myun-Gwan;Sin, Sun;Choi, Tea-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.406-413
    • /
    • 2009
  • This study was carried out to investigate the natural dyeing characteristics of Korean traditional hand-made paper (Hanji). The Hanji was dyed black with extractive of gallnut (Rbusjavanica L), leaves of Amur maple (Acer ginnala), nutshell of chestnut (Castania crenata), and persimmon juice and Chinese ink. And moreover, the Hanji was dyed not only using single and combination of dyestuff but also changing mordants and mordanting procedure. And we estimated the relationship between dyeing characteristics and dyestuff concentration (o.w.f.). The gallnut was the most principal material dyeing black. The procedure of mordanting from copper acetate to Iron (II) chloride and dyeing from gallnut to Amur maple dyestuffs were the best dyeing method for the Hanji to black. The K/S value of dyed Hanji increased with increasing concentration of dyestuff.

Glycerol Carbonate Synthesis by Glycerol Oxidative Carbonylation over Copper Catalysts (구리 촉매상에서 글리세롤의 산화 카르보닐화 반응에 의한 글리세롤 카보네이트 합성)

  • Choi, Jae Hyung;Lee, Sang Deuk;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.416-422
    • /
    • 2013
  • In environmental friendly aspects, the synthesis of glycerol carbonate from glycerol using carbon monoxide and oxygen gases which were produced in petrochemical plants was studied. The oxidative carbonylation of glycerol under batch reaction system was performed on parameter conditions such as effect of various metals (Cu, Pd, Fe, Sn, Zn, Cr), oxidizing agents, mole ratio of carbon monoxide to oxygen, catalyst amount, solvent types, reaction temperature and time and dehydrating agents. In particular copper chloride catalysts showed the excellent activities, and the glycerol carbonate yields over CuCl and $CuCl_2$ catalysts were the maximum of 44% and 64%, respectively at the following reaction conditions: solvent as nitrobenzene, mole ratio of 1:3:0.15 (glycerol:carbon monoxide:catalyst), mole ratio of 2:1 (carbon monoxide:oxygen), the total pressure of 30 bar at 413 K for 4 hr. It was found that reactivity were significantly different depending on the oxidation number of Cu catalysts, and oxygen plays an important role as oxidizing agents in producing H2O during oxidation reaction after carbonylation of glycerol.

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF