• Title/Summary/Keyword: Coplanar waveguide feed

Search Result 24, Processing Time 0.022 seconds

Frequency Characteristic Estimation of Ceramic Stem based TO Package using a Coplanar Waveguide Feed-line for 10 Gbps Data Transmission (10 Gbps급 데이터 전송용 coplanar waveguide feed-line을 이용한 세라믹 스템 기반 TO 패키지의 주파수 특성 예측)

  • Yoon, Euy-Sik;Lee, Myoung-Jin;Jung, Ji-Chae
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.235-240
    • /
    • 2007
  • A ceramic stem based TO package incorporating a coplanar waveguide feed-line has been proposed allowing for 10 Gbps grade data transmission. The frequency response of a cylindrical feed-line fer a conventional metal based TO package was first analyzed, and compared with that of the CPW feed-line used for a ceramic based package such as a butterfly package. For the case where a DFB LD chip is packaged to an LD module, the measured 3 dB frequency bandwidths for the conventional and proposed packages were 3.5 GHz and 7.8 GHz respectively, which agree well with the theoretical results obtained from the modeling based on the small signal equivalent circuits. Consequently, we proposed a novel ceramic based TO package with a CPW feed-line in ceramic material as a stem to improve the frequency characteristics of the conventional one. And, its performance was theoretically observed to confirm that the proposed package provides even wider frequency bandwidth compared to the conventional one.

Design of Loop Antenna Using Coplanar Waveguide Feeding Method (동일면 도파관 급전방식을 이용한 루프안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.55-56
    • /
    • 2017
  • In this paper, a wideband loop antenna is designed using a CPW feeding method for indoor digital TV applications. The proposed loop antenna consists of a square loop and two circular sectors which connect the loop with central feed points, and the CPW feed line is inserted in the lower circular sector. The CPW feed line is designed to match with the 75 ohm port impedance for DTV applications, and the ground slots are etched in order to improve the impedance matching in the middle frequency region. The optimized antenna is fabricated on FR4 substrate, and the experiment results show that it operates in the frequency band of 463-1,280 MHz for a VSWR < 2, which assures the operation in the DTV band.

  • PDF

CPW-Fed Super-wideband Semicircular-Disc-Shaped Dipole Antenna (CPW-급전 초광대역 반원-디스크-모양 다이폴 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.356-361
    • /
    • 2024
  • This paper deals with the design and fabrication of a coplanar waveguide (CPW)-fed super-wideband semicircular-disk-shaped dipole antenna operating in a frequency band of 2.4 GHz or higher. To feed the antenna, a CPW feed line was appended to the center of the lower arm of the semicircular-disk-shaped dipole antenna. For miniaturization, square patches were added to the ends of the two arms of the semicircular-disk-shaped dipole, whereas the slot width of the CPW feed line at the center of the dipole antenna was increased to improve impedance matching in the 5.4-6.3 GHz band. The simulated frequency band of the proposed antenna for a voltage standing wave ratio (VSWR) less than 2 was 2.369-30 GHz(170.7%), whereas the fabricated antenna was maintained VSWR less than 2 in the frequency range of 2.378-20 GHz when measured using a network analyzer operating up to 20 GHz so it can be applied as a super-wideband antenna for next-generation mobile communications.

Design of CPW fed antenna using high dielectric constant materials (고유전율 유전체를 이용한 CPW 급전 안테나의 설계)

  • 심성훈;강종윤;윤석진;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.559-562
    • /
    • 2000
  • In this paper, coplanar waveguide fed antennas (CPWFAs) insetting two slits to boundary of the square microstrip patch are presented. These slits play roles in not only lowering a resonant frequency but also fine-tuning for the proposed antenna together with open stub of CPW feed line. The CPWFAs were designed and manufactured using microwave dielectrics (Al,Mg)TaO$_2$ having high dielectric-constant ($\varepsilon$r=20). The return loss and input impedance of the CPWFAs were investigated in terms of the slit length and open stub length of CPW feed line. It is shown that a resonant frequency decreases as the slit length increases.

  • PDF

Design of Planar Type Modified Monopole Antennas (평면형 변형된 모노폴 안테나 설계)

  • Lee, Hyeon-Jin;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.72-76
    • /
    • 2008
  • In this paper, the several printed square loop antennas which modified monopole antennas are proposed. The proposed antennas are reduced about 20% physical size of antenna and miniaturized reactance value of impedance due to fold center part of the loop. They obtained omni-directional radiation patterns with broad bandwidth and feed method used coplanar waveguide to composed single planar. The proposed antenna bandwidth is about 900MHz($2.63{\sim}3.56GHz]$) resonance frequency on $VSWR{\le}2$. it can be sufficiency of S-DMB band.

Design of Ultra Waveband Coplanar Waveguide-Fed L-planar Type Monopole Antennas (초광대역(UWB) Coplanar Waveguide 급전 L자 평면형 모노폴 안테나 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.82-89
    • /
    • 2007
  • This paper presents a coplanar waveguide fed L-planar type monopole antenna which covers ultra wideband(UWB) region of 3.1 GHz to 10.6 GHz. The proposed UWB L-planar type monopole antenna is designed and implemented on the organic substrates( ${\varepsilon}_{r}=3.38,\;@10\;GHz$). The radiation elements, feed line, and ground planes of the antenna are printed on the same conductive layer of the substrates. The bandwidth of the proposed antenna is measured in the range of 3.0 GHz to 11.0 GHz. The measured radiation patterns are symmetrical in E-plane and omni-directional in H-plane. Antenna gains ranges from 1.4 dBi to 4.6 dBi. The proposed UWB antenna shows that the structure is adequate for the design of RFIC.

A Technique for Broadbanding the CPW-Fed Bow-Tie Slot Antenna

  • Kim Sung-Hak;Wen Lijun;Ko Han-Woong;park Dong-Hee;Ahn Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a technique is presented for broadbanding the bow-tie slot antenna fed by a CPW(coplanar waveguide). The bandwidth performance of existing bow-tie slot designs is greatly enhanced by optimizing the slot shape and properly adjusting the characteristic impedance of the coplanar waveguide feeding the slot. To connect the 50-ohm input coaxial line to the CPW feed line, a linear taper in the CPW is employed. The designed antenna shows a 3.5 $\~$ 10.0 GHz impedance bandwidth, a 3.5 $\~$ 6.0 GHz pattern bandwidth, and a 5.5 $\~$ 7.5 dBi gain over 3.5 $\~$ 6.0 GHz. Above 6.0 GHz, the antenna radiation pattern appreciably deviates from the typical dipolar pattern.

Analysis of Impulse Dispersion for IR-UWB Antenna Using Time-Frequency Analysis (시간-주파수 분석을 이용한 IR-UWB 안테나 임펄스 분산 특성 분석)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1371-1379
    • /
    • 2010
  • This paper presents an analysis of impulse dispersion for impulse radio ultra-wide band(IR-UWB) antenna. A set of antenna structure configurations are highlighted with verification based on the STFT(Short Time Fourier Transform) in 3.1~5.1 GHz: first, a taper-slotted antenna allowing the optimal impulse transmission, and second, 4 types of the omni-directional IR-UWB antenna using different feed structures(microstrip line, and CPW(Coplanar Waveguide)). The proposed STFT allows the analysis of the IR-UWB antenna's dispersion characteristic.

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

Design of a compact coplanar waveguide-fed 2-element quasi-Yagi antenna (코플래너 도파관으로 급전되는 소형 2-소자 준-야기 안테나 설계)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2199-2205
    • /
    • 2016
  • In this paper, a design method for a coplanar waveguide (CPW)-fed 2-element quasi-Yagi antenna (QYA) is studied. A balun between CPW and coplanar strip (CPS) which feeds a planar dipole is implemented by connecting the one end of ground strips in a CPW to a signal strip. The antenna size is reduced by bent strip dipole and reflector, and an integrated balun. The proposed antenna was designed for the operation in a UHF radio frequency identification (RFID) band of 902-928 MHz, and the effects of various parameters such as dipole length, reflector length, distance between dipole and reflector, feed position were examined. The antenna with a size of $90mm{\times}80mm$ was fabricated on an FR4 substrate, and the experiment results reveal a frequency band of 885-942 MHz for a voltage standing wave ratio < 2, a gain > 4.3 dBi, and a front-to-back ratio > 7 dB over the frequency band for the UHF RFID.