• Title/Summary/Keyword: Coordinated Replenishment

Search Result 4, Processing Time 0.019 seconds

Coordinated Inventory Model for the Joint Replenishment Supply Chain (공동 납품 사슬에서의 재고관리 모형)

  • Lee Kyung-Keun;Moon Il-Kyeong;Song Jae-Bok;Ryu Si-Wook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.113-127
    • /
    • 2006
  • We consider an integrated supply chain model in which multiple suppliers replenish items for a single buyer's demand. Also the buyer specifies a basic replenishment cycle and the suppliers replenish the items only at those time intervals. Namely, we propose a model to study and analyze the benefit by coordinating supply chain inventories through the basic replenishment cycle time. The objective of this model is to minimize the total relevant annual cost of the integrated inventory model. After developing proposed coordinated models, we suggest heuristics for searching the solutions of our models. Finally, numerical and computational experiments for each policy are carried out to evaluate the benefits of those models and the compensation policy is addressed to share the benefits.

Genetic Algorithm-Based Coordinated Replenishment in Multi-Item Inventory Control

  • Nagasawa, Keisuke;Irohara, Takashi;Matoba, Yosuke;Liu, Shuling
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • We herein consider a stochastic multi-item inventory management problem in which a warehouse sells multiple items with stochastic demand and periodic replenishment from a supplier. Inventory management requires the timing and amounts of orders to be determined. For inventory replenishment, trucks of finite capacity are available. Most inventory management models consider either a single item or assume that multiple items are ordered independently, and whether there is sufficient space in trucks. The order cost is commonly calculated based on the number of carriers and the usage fees of carriers. In this situation, we can reduce future shipments by supplementing items to an order, even if the item is not scheduled to be ordered. On the other hand, we can reduce the average number of items in storage by reducing the order volume and at the risk of running out of stock. The primary variables of interest in the present research are the average number of items in storage, the stock-out volume, and the number of carriers used. We formulate this problem as a multi-objective optimization problem. In a numerical experiment based on actual shipment data, we consider the item shipping characteristics and simulate the warehouse replenishing items coordinately. The results of the simulation indicate that applying a conventional ordering policy individually will not provide effective inventory management.

Coordinated Transportation and Inventory Decision using Shipment Consolidation (선적 통합을 이용한 수송과 재고의 통합 결정에 관한 연구 분석)

  • Hong, Gi-Seong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.661-664
    • /
    • 2006
  • Under a VMI (Vendor Managed Inventory) system, the vendor holds a certain level of control over not only inbound replenishment decisions on stocking but also outbound re-supply decisions. In this situation, vendor faces a better opportunity to synchronize the inventory and transportation decisions. However, shipment consolidation can reduce transportation expenses, but delivery time about the customer comes to be long and a customer service is fallen. Thus, a stock and transportation decision must consider this correlation. This study look into the relevant literature and suggest about further research direction.

  • PDF

A Design for Integrated Logistics System with Inventory Control and Transportation Planning Problem (재고와 수송계획문제를 고려한 통합물류시스템 설계)

  • 우태희;조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.37-52
    • /
    • 1998
  • In many distribution systems important cost reductions and/or service improvements may be achieved by adopting an efficient inventory policy and proper selection of facilities. These efficiency improvements and service enhancements clearly require an integrated approach towards various logistical planning functions. The areas of inventory control and transportation planning need to be closely coordinated. The purpose of this paper is to construct an integrated model that can minimize the total cost of the transportation and inventory systems between multiple origin and destination points, where in origin point i has the supply of commodities and in destination point j requires the commodities. In this case, demands of the destination points are assumed random variables which have a known probability distribution. Using the lot-size reorder-point policy and the safety stock level that minimize total cost we find optimal distribution centers which transport the commodities to the destination points and suggest an optimal inventory policy to the selected distribution center. We also show if a demand greater than one unit will occur at a particular time, we describe the approximate optional replenishment policy from computational results of this lot-size reorder-point policy. This model is formulated as a 0-1 nonlinear integer programming problem. To solve the problem, this paper proposes heuristic computational procedures and a computer program with UNIX C language. In the usefulness review, we show the meaning and validity of the proposed model and exhibit the results of a comparison between our approach and the traditional approach, respectively.

  • PDF