• Title/Summary/Keyword: Coordinate Measurement

Search Result 381, Processing Time 0.031 seconds

Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique (드론을 이용한 홍수기 유량측정방법 개발(I) - 항공사진측량 기법 적용)

  • Lee, Tae Hee;Lim, Hyeokjin;Yun, Seong Hak;Kang, Jong Wan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1049-1057
    • /
    • 2020
  • This study aimed to develop a flow measurement method using drone in flood season. Measuring flow in all branches is difficult to conduct annually due to budget and labor limitation, safety and river works. Especially when heavy rain like storm comes, changes in stage-discharge relationship should be reviewed; however, it is usually impeded by the aforementioned issues. To solve the problem, it developed a simple measuring method with a minimum of labor and time. A numeric map and numeric orthophoto coordinate of South Korea are mostly based on Transverse Mercator Projection (TM) in accordance with rectangular coordinate system and use World Geodetic Reference System 1980 (GRS80) oval figure for conversion. Applying a concept of aerial photogrammetry, it located four visible Ground Control Points (GCP) near the river at Uijeongbu-si (Singok Bridge) and Yeongdong-gun (Youngdong 2nd Bridge) station and measured the coordinates using VRS DGPS. Hovering at a same level, drones took orthophoto of water surface at an interval of 3 seconds. It defined the pictures with GRS80 TM coordinate system, a rectangular coordinate system and then conducted an orthometric correction using GCP coordinates. According to X and Y coordinate analysis, it estimated the distance between the floating positions at 3 seconds-intervals and calculated the flow through the flow area according to the flow path. This study attested applicability of the flow measurement method using drone in flood season by applying the rectangular coordinate system based on the concept of aerial photogrammetry.

A Study on Quality Improvement by Evaluation and Application of GUM-based Measurement Uncertainty (GUM 기반 측정불확도의 평가 및 적용에 의한 품질개선)

  • Insoo Choi;Sun Hur
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.419-434
    • /
    • 2023
  • Purpose: Measurement results obtained under non-ideal measurement environment conditions may contain uncertain factors. As a result, the reliability of measurement results may be deteriorated. In this study, we tried to find ways to improve quality by evaluating and applying measurement uncertainty based on GUM. Methods: In the flatness measurement of semiconductor parts, uncertainty factors that could occur under actual environmental conditions of workers were derived, and measurement uncertainties were calculated, and methods for minimizing the main factors affecting the measurement results were analyzed. Results: Depending on the part and the coordinate measuring machine, it was shown that the effect of dispersion caused by repeated measurements as type A uncertainty and the effect of the calibration results of equipment as type B uncertainty have the main influence. Conclusion: Depending on the uncertainty factors of type A and type B and the influence of the total expanded uncertainty, the central value and confidence interval of the initial measurement results showed fluctuations. It is considered that analysis and measures for the main uncertainty factors are needed as quality improvement in the industrial field.

A TWO-DIMENSIONAL FINITE VOLUME MODEL IN NONORTHOGONAL COORDINATE SYSTEM

  • Kim, Chang-Wan;Lee, Bong-Hee;Cho, Yong-Sik;Yoon, Tae-Hoon
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to simulations of flows in a 180 degree curved bend flow. Numerical prediction are compared to available laboratory measurement. A good agreement is observed.

  • PDF

Position Detection Algorithm for Auto-Landing Containers by Laser-Sensor, Part I: 3-D Measurement (컨테이너의 자동랜딩을 위한 레이저센서 기반의 절대위치 검출 알고리즘: 3차원 측정 (Part I))

  • Hong, Keum-Shik;Lim, Sung-Jin;Hong, Kyung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.45-54
    • /
    • 2007
  • In the context of auto-landing containers from a container ship to a truck or automatic guided vehicle and vice versa, this research investigates three schemes, one in Part I and two in Part II, for measuring the absolute position of a container. Coordinate transformations between the reference-coordinate, sensor-coordinate, and body-coordinate systems are briefly discussed. The scheme explored in Part I aims the use of three laser-slit sensors, which are relatively inexpensive. In this case, nine nonlinear equations are formulated for six unknown variables (three for orientation and three for position), so a closed-form solution is not available. Instead, an approximate solution through linearization was derived. An advantage of the method in Part I is its ability to measure an absolute position in 3D space, while a disadvantage is the computation time required to obtain pseudo-inverses and the approximate nature of the obtained solution. Numerical examples are provided.

Coordinate Measuring Technique based on Optical Triangulation using the Two Images (두장의 사진을 이용한 광삼각법 삼차원측정)

  • 양주웅;이호재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.76-80
    • /
    • 2000
  • This paper describes a coordinate measuring technique based on optical triangulation using the two images. To overcome the defect of structured light system which measures coordinate point by point, light source is replaced by CCD camera. Pixels in CCD camera were considered as virtual light source. The overall geometry including two camera images is modeled. Using this geometry, the formula for calculating 3D coordinate of specified point is derived. In a word, the ray from a virtual light source was reflected on measuring point and the corresponding image point was made on the other image. Through the simulation result, validation of formula is verified. This method enables to acquire multiple points detection by photographing.

  • PDF

Comparison between the General Least Squares method and the Total Least Squares method through coordinate transformation (좌표변환을 통한 일반최소제곱법과 토탈최소제곱법 비교연구)

  • 박영무;김병국
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.9-16
    • /
    • 2004
  • Performing adjustments where the observation equations involve more than a single measurement are General Least Squares(GLS) and Total Least Squares(TLS). This paper introduces theory of the GLS and TLS and compared experimentally accuracy and efficiency of those through 2D conformal coordinate transformation and 2D affine coordinate transformation. In conclusion, in case of 2D coordinate transformation, GLS can produce a little more accurate and efficient than TLS. In survey fields, The GLS and TLS can be used cooperatively for adjusting the actual coordinate measurements.

  • PDF

A Measurement Error Correction Algorithm of Road Image for Traveling Vehicle's Fluctuation Using V.F. Modeling (V.F. 모델링을 이용한 주행차량의 진동에 대한 도로영상의 계측오차 보정 알고리듬)

  • Kim Tae-Hyo;Seo Kyung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.824-833
    • /
    • 2006
  • In this paper, the image modelling of road's lane markings is established using view frustum(VF) model. From this model, a measurement system of lane markings and obstacles is proposed. The system also involve the real time processing of the 3D position coordinate and the distance data from the camera to the points on the 3D world coordinate by virtue of the camera calibration. In order to reduce their measurement error, an useful algorithm for which analyze the geometric variations due to traveling vehicle's fluctuation using VF model is proposed. In experiments, without correction, for instance, the $0.4^{\circ}$ of pitching rotation gives the error of $0.4{\sim}0.6m$ at the distance of 10m, but the more far distance cause exponentially the more error. We con finned that this algorithm can be reduced less than 0.1m of error at the same condition.

A Study on the Performance of Atomic Force Probe for Coordinate Measuring Machines (3차원 측정기를 위한 원자간력 프로브 성능 연구)

  • Jung, P.G.;Bae, G.H.;Hong, S.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2008
  • This paper presents an atomic force probe for triggering coordinate measuring machines(CMMs). A rigorous comparison is made between touch trigger probe and atomic force probe for CMMs. Typical CMMs(touch trigger probe based CMMs) often lead to some errors associated with object curvature and difference in triggering sensitivity. Their applicability is limited only to hard objects. The aim of this work is to develop a trigger sensor for CMMs using atomic force. In order to show the applicability of atomic force as a trigger sensor, a cylindrical shape is measured with a CMM and an atomic force microscope. Three different touch probe heads with different ball sizes are tested. The experiments show that smaller ball provides better results for curved objects. The experimental results also show that the performance of atomic force as a trigger sensor is about that of the smallest ball probe. In addition, experiments are also performed to measure soft objects. Finally, this paper suggests and verifies a trigger sensor using atomic force for CMMs.