• Title/Summary/Keyword: Coordinate Control

Search Result 746, Processing Time 0.029 seconds

Digital Receding Time Horizon LQ Optimal Contour Control System (디지털 후퇴 유한시간 구간 LQ 최적 윤곽제어시스템)

  • Sim, Young-Bok;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.105-113
    • /
    • 2006
  • This work is concerned with the development of digital contouring controller for multi-axial servosystems. Digital optimal contouring controller is proposed to coordinate each of the controllers of multiple feed drives and specifically improve the contouring performance. The optimal control formation includes the contour error explicitly in the performance index to be minimized. The contouring control is exercised for straight line and circular contours. Substantial improvement in contouring performance is obtained for a range of contouring conditions. Both steady state and transient error measures have been considered. The simulation study presented has established the potential of the proposed controller to improve contouring performance.

A Compliance Control Strategy for Robot Manipulators Under Unknown Environment

  • Kim, Byoung-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1081-1088
    • /
    • 2000
  • In this paper, a compliance control strategy for robot manipulators that employs a self-adjusting stiffiness function is proposed. Based on the contact force, each entry of the diagonal stiffness matrix corresponding to a task coordinate in the operational space is adaptively adjusted during contact along the corresponding axis. The proposed method can be used for both the unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results involving a two-link direct drive manipulator interacting with an unknown environment demonstrates the effectiveness of the proposed method.

  • PDF

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

Machining Technology of Scroll shape by Feed control method (이송속도 제어를 통한 스크롤 형상의 가공기술)

  • 심상우;강명창;김정석;정현출
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.123-127
    • /
    • 1999
  • This paper suggests the establishment of high-accuracy and high-efficiency machining method of scroll shape workpiece by using the feed control method. The cutting paths for machining the inside and outside surfaces of the scroll-shape workpiece are calculated, and the calculation method of the cutting chip areas based on the coordinate of the base circle is shown. A feed control method is proposed for a constant cutting area and cutting force. By machining test of scroll shape workpiece, The machined accuracy of wrap, tool wear, and surface roughness are evaluated. By this method, Reduction of the machining time and large increase of the efficiency can be expected.

  • PDF

Modeling and Control of 2 DOF EMS System (2자유도 자기부상시스템의 모형화 및 제어기 개발)

  • Jo, Nam-H.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.959-961
    • /
    • 1996
  • In this paper, we study the modeling and control of Electro-Magnetic Suspension System with 2 Degree Of Freedom. While the previous researchers considered the control of single rail EMS Systems, we consider the control of two rail EMS Systems. We first derive a simple model to represent the dynamics of EMS System with 2 D.O.F., using the Lagrange's method. The nonlinear equations of motion that we derive are shown to be linearizable by coordinate change and nonlinear static state feedback. The nonlinear static state feedback controller is constructed explicitly.

  • PDF

Electromagnetic Analysis and Control Parameter Estimation of Moving-Coil LOA Using Transfer Relations (전자기적 전달관계를 이용한 가동코일형 LOA의 전자기적 특성해석 및 제어정수 도출)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Park, Ji-Hoon;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.129-131
    • /
    • 2005
  • This paper deals with an electromagnetic analysis and control parameter estimation of a moving-coil linear oscillatory actuator (MCLOA). Analytical solutions for electromagnetic characteristics of the MCLOA are obtained from transfer relations derived in terms of a magnetic vector potential and two-dimensional (2-d) rectangular coordinate systems. And then, on the basis of 2-d analytical solutions, control parameters such as the thrust constant, the back-emf constant and winding inductances are estimated. Finally, analytical results for both electromagnetic characteristics and control parameters of the MCLOA are validated extensively by finite element (FE) analyses. In particular, test results such as static thrust, resistance and inductance measurements are given to confirm the analyses.

  • PDF

Sliding Mode Control of a Robot Manipulator by the Impedance Approach (임피던스 방식에 의한 로보트 매니퓰레이터의 슬라이딩 모드 제어)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.25-32
    • /
    • 1994
  • This paper presents a robust impedance controller design to coordinate a robot manipulator under system uncertainties while regulating external forces. By an impedance approach, the relationship between the motion and external forces is defined. Due to the system uncertainties, two kind of sliding mode control schemes based on the impedance approach are derived to ensure that the manipulator end-effector follows a desired trajectory and the force applied to end effector is regulated according to a target impendance. A stability condition is shown according to a sliding condition. To evaluate the devised control scheme, a numerical example is shown.

  • PDF

Low-Speed Performance Improvement of Slip Based Sensorless Control for Three-Phase Induction Motor Used in Treadmill (트레드밀에 사용되는 3상 유도전동기의 슬립 기반 센서리스 제어 저속성능 향상)

  • Lee, Su-Hyoung;Lee, Sang-Hee;Mun, Tae-Yang;Han, Hee-Min;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Recent high-end treadmills are demanding stable performance at lower speeds. In this study, a slip control-based induction motor sensorless algorithm for treadmills, which have heavy load variations, is proposed. A modified Gopinath flux estimator is used to evaluate the rotor flux. Results indicate that a good speed regulation performance is achieved even at a low speed of approximately 3 Hz with a nominal exercise load of 90 kg body weight. The slip calculation method in the stationary coordinate system is adopted to improve the control stability. The proposed algorithm is verified throughout the simulation study using PSIM, and the experimental test consists of a commercial treadmill system.

Admittance Control for Satellite Docking Ground Testing System (위성 도킹 지상시험장치의 어드미턴스 제어)

  • Heejin Woo;Youngjin Choi;Daehee Won
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • The paper presents a hardware-in-the-loop (HIL) system designed for satellite movement testing in the microgravity environment on the ground with two industrial robots. Especially, the paper deals with the contact between satellites during rendezvous and docking simulations of satellites using a robotic HILS system. For this purpose, the admittance control method plays a core role in preventing damage to the satellite or robot from contact force between satellites. The coordinate frames are transformed into the mass center of the satellite and the admittance control at the level of exponential coordinates is adopted to actively use the properties of Lie groups related to tracking errors. These methods effectively mitigate the risk of robot damage during inter-satellite contact and ensure efficient tracking performance of satellite movements.

Evaluation of Network-RTK Survey Accuracy for Applying to Ground Control Points Survey (지상기준점측량 적용을 위한 Network-RTK 측량 정확도 평가)

  • Kim, Kwang Bae;Lee, Chang Kyung;An, Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.127-133
    • /
    • 2014
  • The purpose of this study is to evaluate the accuracy of Network-RTK(VRS) survey for applying to Ground Control Points(GCPs) survey required for mapping aerial photographs. Network-RTK has been serviced by National Geographic Information Institute since 2007. On the basis of the global coordinates system(ITRF2000), the coordinates of GCPs determined by Static GNSS survey with relative positioning techniques were regarded as accurate values. The coordinates of GCPs were also determined by Network-RTK survey using two kinds of receivers, and then they were converted into the global coordinates system(ITRF2000) by applying suitable geoid model and coordinate transformation. These coordinates of GCPs were compared with those from Static GNSS survey. The root mean squares error (RMSE) of coordinate differences between Network-RTK and Static GNSS was ${\pm}2.0cm$ in plane and ${\pm}7.0cm$ in height. Therefore, Network-RTK survey that enables single GNSS receiver to measure positions in short time is a practical alternative in positioning GCPs to either RTK survey that uses more than two sets of GNSS receivers or Static GNSS survey that requires longer observation time.