• Title/Summary/Keyword: Cooperative robot

Search Result 169, Processing Time 0.029 seconds

A Navigation Algorithm of Modular Robots with 3 DOF Docking Arm in Uneven Environments (3자유도 결합 팔을 가진 모듈형 로봇의 비평탄 지형 주행 알고리즘)

  • Na, Doo-Young;Min, Hyun-Hong;Lee, Chang-Seok;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.311-317
    • /
    • 2010
  • In the paper, we propose an improved mobility method of modular robots by physical docking in the uneven environments. The modular robot system consists of autonomous docking device, 3 DOF robotic arm, motion controller, and main controller. Real-time location and direction of the robot are estimated using inner GPS and they are used to control direction and path of each robot for physical docking between modular robots. We design a navigation algorithm of modular robot using physical docking and cooperative navigation in the environment with broken road and low stair. The proposed method is verified by navigation experiments of three developed modular robots in the uneven environments.

Communication Model and Its Theoretical Analysis for Group Behavior of Swarm Robot (군집 로봇의 군 행동을 위한 통신 모델과 이론적인 해석)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.8-17
    • /
    • 2006
  • It is essential for robot to have the sensing and communication abilities in the swarm robot system. In general, as the number of robot goes on increasing, the limitation of communication capacity and information overflow occur in global communication system. Therefore a local communication is more effective than global one. In this paper, we analyze information propagation mechanism based on local communication. To find an optimal communication radius, we propose several methods with different conditions. Also, to avoid chaotic behavior which occurs when a robot obtains and loses information, we will suggest the stable condition of information propagation.

A Human Robot Interactive System "RoJi"

  • Shim, In-Bo;Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2670-2675
    • /
    • 2003
  • A human-friendly interactive system, based on the harmonious symbiotic coexistence of human and robots, is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly among obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between humans and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction of human and robot, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

  • PDF

Control of a Two-Arm Robot System for Assembly in Highy Uncertain Environment (불확실한 환경에서 조립을 수행하는 두 대의 로봇 팔 제어)

  • Jeong, Seong-Yeop;Gang, Gyeong-Dae;Lee, Du-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3072-3079
    • /
    • 2000
  • Assembly tasks are often performed by one robot with fixtures. This type of assembly system has low flexibility in terms of the variety of parts and the part-presentation the system can handle. This paper addresses assembly without fixtures using two-manipulator robot. An active method using force feedback is proposed for the peg-in-hole assembly in highly uncertain environment. Assembly states are defined as status having unique motion constraints and events are modeled as variation of the environmental force. The states are recognized through identification of the events using two 6-d. o. f. force/moment sensors. The proposed method is verified and evaluated by experiments with round peg-in-hole assembly.

Study of Dynamic Analysis and Optimization for Control of Two Robots Simultaneously Grasping a Rigid Body Object (강체를 함께 쥔 두 대 로봇의 제어를 위한 동력학적 해석과 최적화 방안 연구)

  • 고진환;송문상;유범상;박상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.507-512
    • /
    • 1997
  • This paper presents a method of finding optitnal joint torques of two robots when they hold an object simultaneously. Although the importance of the multiple cooperating robot system increases for more flcviblc ni;mufacturing automation, dynamic solutions to multi-robot system forming closcd kinematic chain is not easy to find. Newton-Eulcr approach is used for the dynamic formulation of two robots fonn~ng closcd kincmatic chains gmsping a rigid body object. The nrcthodology to optimize the joint torques to satisfy given criterta and obtain bettcr control of the system is discussed. The scheme is illustrated by an example.

  • PDF

Active assembly Method Using a Two-Arm Robot System in Highly Uncertain Environment (불확실한 환경에서 두 팔 로봇을 이용한 능동적 조립 방법)

  • 정성엽;강경대;이두용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.73-73
    • /
    • 2000
  • Assembly is usually performed by one robot and fixtures. This type of assembly system has Low flexibility in terms of variety of parts and part-presentation that the system can handle. This paper addresses assembly without fixtures using two-manipulator robot. An active method using force feedback is proposed for the peg-in-hole assembly in highly uncertain environment. Assembly states are described by extended contact relations. Qualitative templates for events are easily derived from the token vector of the Petrinet model. The states are recognized through identification of the events using two 6-d.o.f force/moment sensors. The proposed method is verified and evaluated through experiments with round peg- in-hole assembly.

  • PDF

Behavior Control Algorithm of Swarm Robots to Maintain Network Connectivity (네트워크 연결성 유지를 위한 군집 로봇의 행동 제어 알고리즘)

  • Kim, Jong Seon;Jeong, June Young;Ji, Sang Hoon;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1132-1137
    • /
    • 2013
  • In swarm robot systems, it is vital to maintain network connectivity to ensure cooperative behavior between robots. This paper deals with the behavior control algorithm of the swarm robots for maintaining network connectivity. To do this, we divide swarm robots into search-robots, base-robots, and relay-robots. Using these robots, we propose behavior control algorithm to maintain network connectivity. The behavior control algorithms to maintain network connectivity are proposed for the local path planning using virtual force and global path planning using the Delaunay triangulation, respectively. Finally, we demonstrate the effectiveness and applicability of the proposed method through some simulations.

Behavior leaning and evolution of collective autonomous mobile robots using reinforcement learning and distributed genetic algorithms (강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.56-64
    • /
    • 1997
  • In distributed autonomous robotic systems, each robot must behaves by itself according to the its states and environements, and if necessary, must cooperates with other orbots in order to carray out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforement learning having delayed reward ability and distributed genectic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the perfodrmance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper, we verify the effectiveness of the proposed method by applying it to cooperative search problem.

  • PDF

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (모바일 로봇의 충돌회피 알고리즘 개발)

  • Nguyen, Huu-Cong;Kim, Gi-Bok;Jo, Sang-young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.99-109
    • /
    • 2015
  • This study proposes a new approach to analyze the impedance and the elasticity of a serial chain of spring-damper system, areal-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-position adjustment to solve a collision problem by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process,, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative is carried out by the system of robots. A control technology is proposed to implement for mobile robot.

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.