• Title/Summary/Keyword: Cooperative relaying

Search Result 122, Processing Time 0.02 seconds

Cooperative Transmission Protocol based on Opportunistic Incremental Relay Selection over Rayleigh fading channels (레일리 페이딩 채널 상에서 기회주의적 증분형 중계기 선택 기법을 기반으로 한 협력 전송 알고리즘)

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.53-58
    • /
    • 2011
  • In this paper, we firstly propose a novel cooperative transmission protocol, which utilizes the advantages of mid-notes in the route from the source to the destination. Taking benefits from balancing between the received packet from the source and acknowledge message from the destination, the mid-node between the source and the destination is firstly considered to be the broadcaster. If its signal is successfully received from the source, it leads to consider the next nodes, which has closer distance to the destination than it. If one of these nodes correctly receives the signal, it performs broadcasting the signal to the destination instead of mid-node. Otherwise, the mid-node directs attention to these nodes being near to the destination. As the result, some nodes are unnecessary to be considered and passed over time. After that, we analyze some published selection relaying schemes based on geographic information to choose the best nodes instead of the instantaneous SNR as before. Finally, simulation results are given to demonstrate the correctness of the performance analyses and show the significant improvement of the selection relaying schemes based geographic information compared to the other ones.

Coded Cooperation Communication over Two-Way Relay Network (양 방향 중계 네트워크에서의 부호화 협력 통신)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2011
  • Comparing conventional one-way relaying, two-way relaying scheme with network coding can achieve high throughput by reducing the transmission time. Coded cooperation protocol, which is a algorithm that uses coding on physical layer, can achieve high reliability. In this paper, we propose coded cooperation protocol over two-way relay network. Simulation results show proposed protocol has better performance in terms of reliability and throughput compare with conventional amplify and forward protocol. Also, with same throughput, proposed protocol has better performance in terms of reliability compare with the conventional hybrid decoded and forward protocol.

Cooperative Diversity in a Spectrum Sharing Environment

  • Ban, Tea-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.515-522
    • /
    • 2011
  • In this paper, we investigate cooperative diversity in a spectrum sharing environment where secondary users utilize primary users' spectrum only if the interference power received at the primary users is maintained below a predetermined level. The outage probability of a selective decode-and-forward (DF) based cooperative diversity scheme in the secondary network is derived to analyze the effects of spectrum sharing on cooperative diversity. Our analytical and simulation results show that the outage probability is saturated at a certain level of transmit power of secondary users due to interference regulation, and, hence, cooperative diversity gains are lost. Through asymptotic analysis, we also identify the critical value of transmit SNR beyond which the outage probability is saturated.

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

High Capacity Relay Protocols for Wireless Networks

  • Fan, Yijia;Krikidis, Ioannis;Wang, Chao;Thompson, John S.;Poor, H. Vincent
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.196-206
    • /
    • 2009
  • Over the last five years, relaying or multihop techniques have been intensively researched as means for potentially improving link performance of wireless networks. However, the data rates of relays are often limited because they cannot transmit and receive on the same frequency simultaneously. This limitation has come to the attention of researchers, and recently a number of relay techniques have been proposed specifically to improve the data efficiency of relaying protocols. This paper surveys transmission protocols that employ first single relays, then multiple relays and finally multiple antenna relays. A common feature of these techniques is that novel signal processing techniques are required in the relay network to support increased data rates. This paper presents results and discussion that highlight the advantages of these approaches.

Decode-and-Forward Relaying Systems with Nth Best-Relay Selection over Rayleigh Fading Channels

  • Duy, Tran Trung;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.8-12
    • /
    • 2012
  • In this paper, we evaluate performances of dual-hop decode-and-forward relaying systems with the $N^{th}$ best-relay selection scheme. In some schemes, such as scheduling or load balancing schemes, the best relay is unavailable and hence the system must resort the second best, third best, or generally the $N^{th}$ best relay. We derive the expressions of the outage probability and symbol error rate (SER) for this scenario over Rayleigh fading channels. Monte-Carlo simulations are presented to verify the analytical results.

Selection Relaying Scheme Based Geographic Information with Imperfectly Decoding Relays in ARQ protocols

  • Xuyen, Tran Thi;Kong, Hyung Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.639-645
    • /
    • 2010
  • In the paper, a selection relaying scheme is proposed and analyzed in which relays retransmit the erroneous packet without checking the correctness of their received packets. The proposal not only achieves the full diversity gain in a limited number of retransmissions but it also gets better performance than other schemes. Additionally, a threshold in the number of retransmissions and the closed form expression for packet error rate (PER) are derived. Simulation results are given to confirm the accuracy of analysis and to significantly prove advantages of the proposal.

Soft-Decision for Differential Amplify-and-Forward over Time-Varying Relaying Channel

  • Gao, Fengyue;Kong, Lei;Dong, Feihong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1131-1143
    • /
    • 2016
  • Differential detection schemes do not require any channel estimation, which can be employed under user mobility with low computational complexity. In this work, a soft-input soft-output (SISO) differential detection algorithm is proposed for amplify-and-forward (AF) over time-varying relaying channels based cooperative communications system. Furthermore, maximum-likelihood (ML) detector for M-ary differential Phase-shift keying (DPSK) is derived to calculate a posteriori probabilities (APP) of information bits. In addition, when the SISO is exploited in conjunction with channel decoding, iterative detection and decoding approach by exchanging extrinsic information with outer code is obtained. Finally, simulation results show that the proposed non-coherent approach improves detection performance significantly. In particular, the system can obtain greater performance gain under fast-fading channels.

Cooperation Method for Cellular Communication Systems

  • Kim, Eung-Sun;Kim, Young-Doo;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1251-1259
    • /
    • 2007
  • A scheme for selecting the mode with the maximum system capacity is proposed for cooperative relaying. Three possible modes are presented based on decode-and-forward relaying, and the time required by each mode is evaluated. Based on these results, a method is then developed for selecting the optimal mode with the minimum time duration (or maximum channel capacity). Computer simulations confirm that the optimal mode outperforms the other modes.

Opportunistic Relaying Based Spectrum Leasing for Cognitive Radio Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • Spectrum leasing for cognitive radio (CR) networks is an effective way to improve the spectrum utilization. This paper presents an opportunistic relaying based spectrum leasing for CR networks where the primary users lease their frequency band to the cognitive users. The cognitive users act as relays for the primary users to improve the channel capacity, and this improved capacity is used for the transmission of secondary users' data. We show that the cognitive users can use a significant portion of the communication resource of primary networks while maintaining a fixed target data rate for the primary users. Moreover, the primary network is also benefited by the cooperating cognitive users in terms of outage probability. Information theoretic analysis and simulation results are presented to evaluate the performances of both primary and cognitive networks.