• Title/Summary/Keyword: Cooling-air cooler

Search Result 121, Processing Time 0.019 seconds

Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load (부하변화에 따른 hot-gas 바이패스 방식별 성능 비교)

  • Baek, Seung-Moon;Yoon, Jung-In;Son, Chang-Hyo;Heo, Jung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.

Estimating the Air Temperature Cooling Effect of the Cheonggyechun Stream Restoration Project of Seoul, Korea

  • Park Chong-Hwa;Kwon Young-Sang
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.120-129
    • /
    • 2004
  • Urban stream restoration projects can improve water quality, wildlife habitats, urban landscape, outdoor recreation spaces, and urban microclimate. The objectives of this research were to investigate temperature cooling effect of urban streams by using satellite imagery, to evaluate environmental variables related to stream cooling effect, and to estimate the cooling effect of the Cheonggye stream restoration project of Seoul, Korea. Findings of this research can be summarized as follows. First, a method of estimating temperature distribution around urban streams by using satellite imagery was developed. Scatter plots of distance from stream edges and average temperature obtained through multiple buffering were used for the estimation. Second, urban temperature cooling effect of streams was estimated by comparing background temperature and temperature of each buffer zone. Third, environmental factors affecting stream cooling effect were also identified. Fourth, the temperature cooling effect of the restoration project was estimated based on three scenarios. An estimated cooling effect based on the average cooling effect of existing tributaries showed the most significant effect; $2.0^{\circ}C$ lower than the present level at the edge of the renovated stream. It was estimated that the temperature of the same area would be $1.4^{\circ}C$ cooler than the present level if the cooling effect of the Yangjaechun was used as the bench mark But the effect would be $1.2^{\circ}C$ lower than the present level if environmental variables related to the temperature cooling effect of urban streams were used as the bench mark.

  • PDF

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube (수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 최이철;강병하;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

An Experimental Study on Oil Effect of CO2 in Heat Pump Outdoor Heat Exchanger (CO2용 실외열교환기의 오일 영향에 따른 성능변화에 대한 실험적 연구)

  • Lee, Jin-Gwan;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • In order to investigate the effects of PAG oil concentration on heat transfer performance and pressure drop during gas cooling process of $CO_2$, the experiments on fin-tube heat exchanger of $CO_2$ heat pump were performed. The experimental apparatus consists of a gas cooler, a heater, a chiller, a mass flow meter, a pump and measurement system. Experiments were conducted in various experimental conditions, which were inlet temperature($110^{\circ}C$), mass flow rates (50, 55, 60, 65, 70 g/s) and PAG oil concentration(0 to 2.6 wt%). Heat transfer rate decreased with the increase of the oil concentration and the decrease of inlet pressure. And pressure drop increased with the increase of the oil concentration and mass flow rate of refrigerant. The COP reduction by deterioration of gas cooler performance with oil concentration was analyzed. When inlet pressure of gas cooler is 100 bar, the COP reduction was estimated by 6% under 1 wt% of oil concentration.

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

Development of Environmental Control System for High-Quality Shiitake Mushroom (Lentinus edodes (Berk.) Sing.) Production

  • Kwon, Jin-Kyung;Kim, Seung-Hee;Jeon, Jong-Gil;Kang, Youn-Ku;Jang, Kab-Yeol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.342-351
    • /
    • 2018
  • Purpose: Recently, an increasing number of farms have been cultivating shiitake mushrooms using a sawdust substrate and a cooler/heater. In this study, an attempt was made to develop an environmental control system using a heat pump for cultivating high-quality shiitake mushrooms. Methods: An environmental control system, consisting of an air-to-water type heat pump, a thermal storage tank, and a radiator in a variable opening chamber, was designed and fabricated. The system was also installed in the cultivation facility of a farm cultivating shiitake mushrooms so as to compare the proposed control system with a conventional environmental control system using a cooler-condensing unit and an electric hot water boiler. Results: The uniformity of the environment was analyzed through environment measurements taken at several positions inside the cultivation facility. It was determined that the developed environmental control system is able to control the variations in temperature and relative humidity to within 1% and 3%, respectively. In addition, a maximum temperature difference of $30^{\circ}C$ (maximum of $35^{\circ}C$, minimum of $5^{\circ}C$) and a maximum relative humidity difference of 30% (maximum of 90%, minimum of 60%) can be attained within 30 min inside the cultivation facility through the cooling of the heat pump and heating of the radiator in a variable opening chamber. Thus, the developed control system can be used to cultivate high-quality shiitake mushrooms more effectively than a conventional cooler and heater. Conclusions: In comparison with a conventional environmental control system, the developed system decreased the yield of ordinary mushrooms by 65%, and increased that of high-quality mushrooms by 217%. This corresponds to a 16% increase in gross farm income. Consequently, the developed system is expected to improve the income of shiitake mushroom cultivating farms.

Application for Heating and Cooling System Using Sewage Water (100RT급 하수열원 냉난방시스템 적용)

  • Chang, Ki-Chang;Yoon, Hyung-Kee;Park, Seong-Ryong;Baik, Young-Jin;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.215-220
    • /
    • 2006
  • Along with socioeconomic development and improving standard of living, the heat demand for heating and cooling in residential and commercial sectors is expected to expand rapidly, reaching over 43 million TOE by 2010 in Korea(about 80% increase compared with that in 1995). Since most of this heat demand is loop temperature below $60^{\circ}C$, the utilization of 'unused energy' is surely one of very effective measures to both environmental preservation and energy conservation. 'Unused energy' in this paper is implicated as 'temperature differential energy' available from treated sewage water, useful and abundant heat source for heat pump(cooler in summer and warmer in winter than outside air). An analysis was carried out to estimate the energy potential of treated sewage water for heat pump heat source. Some analysis were taken to study the characteristics of a heat pump system using the treated sewage water as heat source.

  • PDF

Numerical Analysis of Heat Transfer of Aligned Wing Type Pin-Fin Array of Air Cooling Module with Various Fin Shapes for Electronic Packaging Application (날개형 핀-휜의 기하학적 형상이 전자기기 모듈 냉각용 공기냉각기의 유동 및 열전달에 미치는 영향)

  • Kim, Soo-Youn;Heo, Kyeon;Shin, Seok-Won
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.265-270
    • /
    • 2008
  • In this study, the flow and heat transfer of the aligned pin-fin array of the air cooling module for electronic packaging application were numerically analyzed with various fin shapes. The geometric cross-sectional shapes of pin-fins considered in this study were ellipse, wing and circle. The fins had same cross-sectional area and height, but they had different surface areas. As the results, the surface area, the heat transfer coefficient, and the heat transfer performance of pin-fins greatly depended on their shapes. Of the three types of pin-fins, the wing type pin-fin with suitable shape produced the best heat transfer performance. This result implies that the cooling capacity of the pin-fin cooler can be significantly enhanced only by the change of fin shape without increasing air flow-rate or fin density.

  • PDF