• 제목/요약/키워드: Cooling-air cooler

검색결과 121건 처리시간 0.023초

재냉기를 이용한 고성능 VI(Vapor Injection)사이클 열펌프의 냉방 성능특성에 관한 연구 (Cooling Performance Characteristics of High-Performance Heat Pump with VI Cycle Using Re-Cooler)

  • 이진국;최광환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.592-598
    • /
    • 2015
  • 본 연구에서는 공랭식 VI(Vapour-Injection) 사이클을 적용한 R410A용 고성능 하절기 냉방 열펌프의 성능 특성을 실험적으로 규명하였다. 실험에 사용한 장치는 VI 압축기, 응축기, 유분리기, 판형열교환기, 에코노마이져(economizer), 증발기, 그리고 재냉기(re-cooler)로 구성하였다. 냉방 성능 실험 조건은 다음과 같이 3가지 사이클로 VI 사이클을 적용하고 증발기 출구 냉매와 VI사이클 흡입 냉매가 재냉기에서 서로 열교환 하지 않는 사이클(사이클 A)과 열교환을 하는 사이클(사이클 B), 그리고 VI 사이클도 적용하지 않고 증발기 출구 냉매와 VI 사이클 흡입 냉매와의 열교환도 없는 사이클(사이클 C)로 구분하였다. 분석 결과, 냉방 성능은 증발기 출구 냉매와 VI사이클 흡입 냉매가 서로 열교환하는 VI사이클(사이클 B)이 가장 높았으며 VI사이클을 적용하지 않은 사이클 C가 가장 낮음을 알 수 있었으며, 사이클B의 냉방성능계수($COP_C$)가 평균 3.5로 사이클A보다 8.6%, 사이클C보다 33% 높은 값을 나타내었다.

열전모듈을 이용한 냉방기의 최적 운전조건에 관한 실험적 연구 (An Experimental Study on the Optimal Operation Condition of an Air-Cooler using Thermoelectric Modules)

  • 황준;강병하
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2006
  • This article presents the optimal operation of an air conditioner using thermoelectric modules. A prototype of air conditioner using four thermoelectric modules has been designed and built. The system performance with evaporative cooling for hot side of the module are studied in detail for several operating parameters, such as input power to the thermoelectric module, fans and pump. It is found that the optimal input voltage to the thermoelectric module and pump is selected for the best system performance based on the cooling capacity and the COP at a given operating condition. It is also found that both the cooling capacity and COP of a system is increased with an increase in the input power to fans. The cooling performance could be improved when the ambient temperature is increased and the relative humidity is decreased since the evaporative cooling at the hot side has been increased.

곡물냉각기의 성능해석을 위한 시뮬레이션 (Simulation for Performance Analysis of a Grain Cooler)

  • 박진호;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.449-460
    • /
    • 2001
  • This study was carried out to develop a simulation model with EES(Engineering equation solver) for analyzing the performance of a grain cooler. In order to validate the developed simulation model, several main factors which have affected on the performance of the gain cooler were investigated through experiments. A simulation model was developed in the standard vapor compression cycle, and then this model was modified considering irreversibe factors so that the developed alternate model could predict the actual cycle of a grain cooler. The compressor efficiency in vapor compression cycle considering irreversibility much affected on the coefficient of performance(COP). The COP in the standard vapor compression cycle model was greatly as high as about 6.50, but the COP in an alternative model considering irreversibility was as low as about 3.27. As a result of comparison between the actual cycle and the vapor compression cycle considering irreversibility, the difference of pressure at compressor outlet(inlet) was a little by about 48kPa (8.8kPa), the temperatures of refrigerant at main parts of the grain cooler were similar. and the temperature of chilled air was about 8$\^{C}$ in both. The model considering irreversibility could predict performance of the grain cooler. The theoretical period required to chill grain of 1,383kg from the initial temperature 24$\^{C}$ to below 11$\^{C}$ was about 55 hours 30 minutes, and the actual period required in a grain bin was about 58 hours. The difference between the predicted and an actual period was about 2 hours 30 minutes. The cooling performance predicted by the developed model could well estimate the cooling period required to chill the grain.

  • PDF

플라스틱/종이 재질의 간접 증발 소자와 재생 증발 소자 성능 비교 (Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.88-98
    • /
    • 2016
  • 여름철이 무더운 대한민국에서는 냉방에 많은 전력을 소비한다. 이 경우 간접증발냉각을 동시에 적용하면 전기 사용을 줄일 수 있다. 본 연구에서는 물 퍼짐성을 개선한 플라스틱/종이 재질의 간접 및 재생증발소자에 대해 일련의 실험을 수행하였다. ${\epsilon}-NTU$ 방식의 열 및 물질전달 해석 모델과 비교한 결과 모델의 예측치는 간접 및 재생증발소자의 간접증발효율, 냉각열량, 압력손실을 적절히 예측하였다. 모델 해석 결과 간접 및 재생증발소자 모두 건채널 입구온도와 상대습도가 증가하면 간접증발효율이 증가하였다. 또한 재생증발소자의 간접증발효율이 간접증발소자의 값보다 크게 나타났다.

국내 표준계사의 냉난방부하 특성 연구 (A Study on the Characteristics of Heating and Cooling Loads of Standard Chicken Houses in South Korea)

  • 권영철
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.235-243
    • /
    • 2019
  • In South Korea, millions of poultry have died due to repeated heat waves every year. The purpose of this study is to analyze the characteristics of heating and cooling loads of chicken houses in Korea and to present an effective insulation and ventilation measures to minimize the damage of poultry due to summer heat wave and to save energy in chicken houses in winter. The heating and cooling loads of standard chicken house were calculated. As a result of the calculation of maximum heating load based on the minimum ventilation rate in winter, the outdoor air temperature requiring heating was $6{\sim}7^{\circ}C$ to keep the indoor air temperature of chicken houses as $24^{\circ}C$. The peak cooling load of chicken houses was mostly taken by the heat generated by chickens and the heat gain due to ventilation. The heat gain through building envelopes was as small as neglectable. Most of chicken houses is usually cooled by gigantic forced ventilation in summer in Korea. When the chicken houses are cooled by electric cooling machine such as cooler or air conditioner, it is more effective to keep minimum ventilation rate to reduce the maximum cooling load. To lower the temperature of supplying water to cooling pad, it is recommended to use the underground water below 10 meters from the ground if there is abundant underground water.

데이터 센터의 외기냉수냉방 시스템에 대한 에너지 절감효과 분석 (Analysis on the Energy Saving Effect of Free Cooling System in Data Center)

  • 윤정인;손창효;허정호;김영민
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.73-78
    • /
    • 2014
  • Recently, Free cooling system usage has increased at many buildings in intermediate and winter season. Free cooling system is used to reduce the energy consumption of refrigeration in that season. Free cooling system is refrigeration system using cooled water. In general, this system is applied with the building having refrigeration load at all time such as a data center. In this study, energy consumption of a data center taking free cooling system in Ulsan was evaluated by the software HYSYS. the main result is as in the following : free cooling system is effective from January to April and from November to December. In case of Ulsna in 2013, using free coolng system is able to spend refrigeration energy of about 15% less than existing system. According to this result, it is appropriated that free cooling system is used in building having refrigeration load at all time such as data center.

자동차용 $CO_2$ 에어컨 시스템 열교환기 성능 특성에 관한 실험적 연구 (Experimental Studies on the Performance Characteristics of Heat Exchangers of $CO_2$ Air Conditioning System for Vehicle)

  • 김성철;이동혁;원종필
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.146-153
    • /
    • 2009
  • The performance characteristics of heat exchangers which consist of a gas cooler, an evaporator and an internal heat exchanger have been investigated at various operating conditions of $CO_2$ air conditioning system by experiments. The heat exchangers were designed for use in the vehicle $CO_2$ air conditioning system, when considering the characteristics of heat transfer and high pressure as $CO_2$ refrigerant. This paper studied the performance of heat exchangers at various compressor speeds and expansion valve openings, and quantified the heat transfer rates and pressure drops. Heat transfer rates at the gas cooler and the evaporator were 6.9 kW and 5.2 kW, respectively, when the compressor speed was 4000 rpm and refrigerant vapor quality at the evaporator outlet was 0.98. Therefore, this paper carried out that the heat exchangers were analyzed to achieve superior performance for the vehicle transcritical $CO_2$ cycle.

지역별 프리쿨링 시스템의 에너지 절감 분석 (Analysis of Energy Reduction of Free Cooling System with Regions of South Korea)

  • 윤정인;손창효;최광환;백승문;허정호;김영민
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.82-88
    • /
    • 2014
  • Using low outdoor temperature, free cooling system is used in a data center or industrial air-conditioning for energy saving. Because use of IT equipment has increased in some office building recently, there is a growing trend towards using free cooing system. Free cooling system performance is influenced by outdoor temperature. Therefore the performance is different with regions. In this study, performance characteristic of free cooling system is analysed and energy reduction is compared with some regions. Selected regions are 4 cities; including Ulsan analyzed in preceding research, Seoul, ChunCheon and Daejeon. The Aspentech software HYSYS 8.0v was used to conduct the analysis of free cooling system based on temperature per hour of 4 cities in 2013, respectively. The main result is following as. Free cooing system in this study has energy saving effect when outdoor temperature below $7^{\circ}C$. Becuase temperature of Chuncheon is relatively low, using free cooling system can conserve most air-conditioning energy. Energy reduction amount of Seoul is 11%, Chuncheon is 17.5%, Deajeon is 15%, Ulsan is 14%. In case of large scale of air-conditioning, it is reasonable to use free cooling system although the system is used in Seoul.

EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구 (A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC)

  • 이병호;이중섭;김보한;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.