• Title/Summary/Keyword: Cooling systems

Search Result 1,159, Processing Time 0.034 seconds

Sample design of cooling systems for each energy source (에너지원별 냉방기기 표본설계)

  • Kang, Yong-Tae;Lee, Deok-Joo;Kim, Euy-Kyung;Jeon, Ho-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.202-208
    • /
    • 2008
  • The objectives of this study are to collect the population of each cooling system for gas and electric driven systems, and propose sample design for five cooling systems; ice storage systems, system air-conditioning system, turbo system as electric driven cooling systems, and absorption system and Gas driven Heat Pump (GHP) system as gas driven cooling systems. The sample design are carried out based on types of business, capacity, installation region and year. This study proposes criterion of the sample design for cooling systems for each energy source.

  • PDF

DEVELOPMENT OF NIGHT COOLING SYSTEM FOR GREENHOUSE USING COOL AIR AND WATER FROM AN ABANDONED COAL MINE

  • Whoa S. Kang;Wie S. Kang;Lee, Gwi H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1136-1145
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night to get early blooming of strawberries. Various cooling systems were designed and constructed to utilize the cool air and water from tan abandoned coal mine. Cooling systems built for this study were an evaporative cooling system with pad, cooling system using a small or large radiator , and duct cooling system using cool are drawn from coal mine. These systems were individual tested to investigate their effects on cooling greenhouse during summer night. Also, a combined cooling system was tested with operating an evaporative cooling system, small radiator, and duct cooling system simultaneously. The results in this study showed that individual cooling systems such as evaporative cooling system, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined system had little better cooling effect than that of individual cooling syst m except the large radiator . The most effective system for cooling of greenhouse was obtained with using a large a large radiator as the heat exchanger. With operating a large radiator, temperature inside the greenhouse was dropped to about 15-16$^{\circ}C$ while outside temperature was 23-24$^{\circ}C$ during summer night.

  • PDF

A Study on the System Integration and Control Method of Radiant floor Cooling in Apartment Buildings (공동주택에서 바닥복사냉방의 시스템 구성과 제어 방안에 관한 연구)

  • 조영흠;석호태;김광우;여명석
    • Journal of the Korean housing association
    • /
    • v.15 no.2
    • /
    • pp.107-115
    • /
    • 2004
  • The objective of this study is to show the system Integrations and control method for operation of the Radiant Floor Cooling. The systems for radiant floor cooling system consist of only using the radiant floor cooling and the radiant floor cooling integrated with a dehumidification system. And the study is suggested control method with composed radiant floor cooling system through simulations. Radiant floor cooling systems compose of four main parts: an existing radiant heating panel, manifold, cooling source and controller, and sensors. If dehumidifying or supplementary cooling is needed, additional equipments such as PAC and AHU are needed. Simulation results show that control method only using radiant floor cooling system can prevent condensation and set room air temperature with the exception of hot and humid periods and control method using the radiant floor cooling integrated with a dehumidification system is comfort thermal environments and can reduce the cooling load quickly, moreover, show comfort control method to meet various cooling operation situations.

Problems and Control Measures of Industrial Cooling Water (공업용 냉각수의 문제점과 처리법)

  • Bae, Jong-Su;Lee, Gyu-Hwa
    • 한국기계연구소 소보
    • /
    • s.16
    • /
    • pp.117-126
    • /
    • 1986
  • Trouble-free operation of cooling water systems is essential for efficient pro¬duction in most industrial facilities. Improper water treatments frequently cause such problems as corrosion, scaling, fouling and slime formation. Water quality, methods of cooling and materials of construction in the cooling circuit should be carefully studied before making selection of the water treatment programs. This paper reviewed cooling water problems encountered frequently in the open recirculating cooling systems and discussed the counter measures how to cope with them.

  • PDF

Cooling System Design Factors related to Mechanical Load Component (MLC) in Data Center (데이터센터 냉방 시스템의 MLC(Mechanical Load Component) 관련 설계인자 도출)

  • Kim, Ji-Hye
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.606-617
    • /
    • 2018
  • Increased density of racks has resulted in increased use of data center cooling energy and the needs for energy efficient cooling systems has increased. In response to these needs, ASHRAE presented a performance indicator, which is Mechanical Load Component (MLC), for the purpose of evaluating systems at the design stage. However, the MLC metrics presented in the current standard can only be determined for system compliance and compared alternative systems with the system configuration completed. Therefore, there are limitations to considering MLC from the early stages of design. In this study, to extend the scope of application of MLC in the design phase, the design factors of the main equipment comprising the cooling system are classified by the MLC load component and interrelations between design factors were identified.

Water Quality Control System Development for Cooling Towers (냉각탑 수질관리를 위한 자동화 시스템 개발)

  • Lee, Ki-Keon;Song, Moo-Jun;Lee, Young-Jae;Sung, Sang-Kyung;Kang, Tae-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Cooling tower is an important equipment of the cooling systems for large buildings like factory and department store. Water used for cooling in cooling tower is reused continuously. If the water is polluted, corrosion and scale can happen at equipments and pipes. In order to prevent this problem, it is necessary to control the water quality using chemicals. To control the water quality, an automatic control system is designed, fabricated, and experimented. The control system is based on an imbedded microcontroller. Relays are used for power driving, an LCD and LED for display, and RS485 for remote data acquisition. Monitoring program is also developed for easy man-machine interface and extraction of data stored in the imbedded processor and EEPROM. The control system calculates amounts of chemicals necessary using sensor data and injects the chemicals into the cooling tower on proper time. The developed water quality control system is expected to reduce cost of maintenance and extend the lifetime of the cooling systems with low cost.

Analysis of Electric Substitution Effects by the Gas Consumption and Characteristics of Gas Cooling System (냉방기기 사용량과 특성을 고려한 가스냉방기기의 전력대체 효과 분석)

  • Park, Rae-Jun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.669-675
    • /
    • 2012
  • Recently, the amount of electrical heat pump(EHP), a electrical conditioning equipment, is sharply increasing due to the luxury and multi-story trend of building. Accordingly, the cooling load that occupying substantial part of summer electric consumption has increased dramatically, making difficulties in domestic supply of electricity in summer. There are some efforts to replace it with an alternative cooling equipment such as gas heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. It is rare, however, to find studies on the actual effects of GHP on the reduction of summer electricity peak. This study, therefore, estimated the effects of the GHP on the summer electricity peak by the gas consumption and characteristics of gas cooling systems. In addition, electric substitution effects by gas cooling systems were analyzed through case studies in the summer of 2010.

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

Analysis on the Domestic and Abroad Policies and Regulations for the Gas Cooling Systems (국내외 가스냉방 지원제도 비교분석)

  • Kim, Yong-Chan;Cho, Kum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.201-207
    • /
    • 2009
  • In this study, the domestic and abroad policies and regulations on the gas cooling systems have been analyzed. First, the current policies were investigated in Korea and other countries to stimulate the distribution of the gas cooling systems. The advantage and disadvantage for each policy were evaluated. Finally, several policies were proposed for the effective distribution of the gas cooling systems.

  • PDF