• Title/Summary/Keyword: Cooling part

Search Result 601, Processing Time 0.042 seconds

Conformal Cooling Channel Manufacturing for the Die (Conformal Cooling Channel 의 구조물 제작)

  • Lee C.W.;Suh J.H.;Woo S.S.;Kim D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1761-1765
    • /
    • 2005
  • The plastic injection molding industry is increasing pressure to reduce the cycle time in order to improve the productivity. The time of a cooling die is a large part of the cycle time. The conformal cooling channels can reduce the cooling time effectively as compared with conventional production die. It is hard to make the die with a conformal cooling channel by the conventional method. This paper introduces the method of a conformal cooling channel manufacturing by the DMT (Direct Metal Tooling) that is a new technology.

  • PDF

Validation of Gas Turbine Combustor Cooling Design by Conjugate Heat Transfer Analysis (CHT 해석을 통한 가스터빈 연소기 냉각 설계 검증)

  • Shim, Youngsam;Partk, Jungsoo;Kim, Hokeun;Chon, Muhwan;Ryu, Jewook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.271-272
    • /
    • 2015
  • Gas turbine combustors is critical part due to high temperature operating conditions and the optimization of cooling design is required to avoid combustor failure. In gas turbine combustor, effusion cooling, impingement cooling and thermal barrier coating (TBC) are commonly used to improve cooling characteristics. In conceptual design, these cooling schemes are designed by 1D heat transfer calculation. Therefore, these design should be validated ted by nemurical or experiment methods. In this study, Conjugate Heat Transfer (CHT) analysis is performed for validation of gas turbine combustor cooling design.

  • PDF

The implementation of control system for enhancing the reliability of the cooling system of pool storage (저장조냉각계통의 신뢰성향상을 위한 제어시스템 구현)

  • 이철용;변기호;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.367-371
    • /
    • 1990
  • In this paper, a real-time fault tolerant control system has been designed for the cooling system of the spent fuel pool storage. The fault tolerant control system consists of the fault detection part, the redundant actuator part(main and backup pumps) and the controller implemented on programmable. logic controller. This paper considers only the actuator fault whose detection is accomplished using Friedland's separated bias estimation method. This paper also shows the real-time experimental results from which it can be concluded that the designed fault tolerant control system exhibits satisfactory performance.

  • PDF

Study on the cooling control algorithm of electronic devices for an electric vehicle: Part 1 Effectiveness analysis of general control logic (전기자동차용 전자장비 냉각 제어 알고리즘에 관한 연구: Part 1 일반 냉각 제어 로직 유효성 분석)

  • Seo, Jae-Hyeong;Kim, Dae-Wan;Chung, Tae-Young;Jung, Tae-Hee;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1850-1858
    • /
    • 2014
  • The object of this study is to develop an cooling control algorithm for electronics devices of the electric vehicle. In order to estimate the existing cooling control logic of the electronic devices for the small and medium sized electric vehicle, the experiments on the coolant temperature variation of the cooling system were conducted under 4 different seasons conditions. As a result, the existing cooling control logic were overcooled when it was compared with the reference temperature for a required cooling load. In addition, the newly developed optimum cooling control logic for improving the mileages of the tested electric vehicle with consideration of the ambient temperature, vehicle speed, and refrigerant temperature of the air conditioning on/off is necessary.

Modeling of Cooling Channels of Injection Mould using Functionally Graded Material (기능성 경사 복합재를 이용한 사출금형의 냉각회로 모델링)

  • Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1647-1653
    • /
    • 2011
  • The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs.

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

A Study on the Automatic Sensing Device for Gas Leakage of Cooling Plate Using the Microprocessor System

  • Wang, Jee-Seok;Yoon, Hee-Jong;Kang, Ki-Seong;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The cooling water circulation plates had been used to drop the temperature of refractory outside shell of common cooling system by using cooling plate or stave type. When they are attacked by surrounding gas, they are corroded and the water flows in the refractory due to leakage of water. So, the life of refractory material is shortened and changed due to the worse conditions of cooling system. The automatic sensing device for water leakage of cooling plate is developed to check the position of trouble by using the microprocessor system when cooling water leak and gas are flowed into the cooling plate through the leakage position. The flowed gas is detected in the micro-process system which delivers the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave against the water leakage part immediately and then deliver the signal to main control room by using the microprocessor system and wireless-radio relay station. This system will be developed in changing the working condition from manual system to unmanned auto alarm system.

Analysis of Electric Substitution Effects by the Gas Consumption and Characteristics of Gas Cooling System (냉방기기 사용량과 특성을 고려한 가스냉방기기의 전력대체 효과 분석)

  • Park, Rae-Jun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.669-675
    • /
    • 2012
  • Recently, the amount of electrical heat pump(EHP), a electrical conditioning equipment, is sharply increasing due to the luxury and multi-story trend of building. Accordingly, the cooling load that occupying substantial part of summer electric consumption has increased dramatically, making difficulties in domestic supply of electricity in summer. There are some efforts to replace it with an alternative cooling equipment such as gas heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. It is rare, however, to find studies on the actual effects of GHP on the reduction of summer electricity peak. This study, therefore, estimated the effects of the GHP on the summer electricity peak by the gas consumption and characteristics of gas cooling systems. In addition, electric substitution effects by gas cooling systems were analyzed through case studies in the summer of 2010.

Reliability Evaluations for Shear Strength of Resistance Welded Ball Stud according to Different Cooling Methods

  • Park, In-Duck;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.44-50
    • /
    • 2018
  • As a type of bolt with a spherical head, the ball stud is widely used as a part of a ball joint in steering or suspension systems in automobiles. Balls and studs are subjected to heat treatment suitable for each material; in particular, the shear strength of the ball stud must meet the specifications of the production company. This study evaluated the shear strength of joints according to the cooling method of ball studs subject to resistance welding. The shear stress of water cooling was higher than that of air cooling (as-received material). Note, however, th at oil cooling showed lower stress than that of as-received. When judged by standard deviation, mean, and coefficient of variation according to the arithmetic statistics and shape parameter as well as scale parameter, oil cooling is suitable.