• Title/Summary/Keyword: Cooling loss

Search Result 573, Processing Time 0.023 seconds

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Relationship between Total Body Fat and S/V Ratio and Body Cooling for Two Hours at $15^{\circ}C$ (한냉에 노출된 인체의 냉각과 총지방량 및 S/V 비율 사이의 관계)

  • Chung, Kwan-Ogg;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.19-28
    • /
    • 1969
  • Skin temperatures on 10 sites and rectal temperature at every 10 minutes, oxygen consumption at every 20 minutes were measured on 18 male subjects (ages between 14 and 47 years) after exposure to cold air at $15^{\circ}C$ for two hours in a climatic room. Total body fat measured by means of a skinfold method and ratio of body surface area (S) to body volume (V), S/V, were utilized as basis of observations. Surface area was calculated after DuBois equation and body volume was calculated by our original formula. In influencing on the heat loss from the body core to the cold environment, % fat showed inverse relations, whereas, S/V ratio showed direct relations. Thus these two factors acted antagonistically on the body heat loss. Local skin temperatures showed negative correlations with skinfold thickness on the same site, nemaly, on chest, r=-.567; on back, r=-.507; and on upper arm, r=-.353. The other 7 skin sites showed low correlations with % fat. Minimum mean weighted skin temperature (MWST) showed a negative correlation (r=-.443) with % fat, and showed no correlation with S/V ratio. Oxygen consumption in the cold air at $15^{\circ}C$ increased from the first measurement at 20 minutes after exposure and maintained the same increasing trend up to 120 minutes. ${\Delta}T_R$ was greater in tile lean subjects who showed a greater % change in oxygen consumption. The antagonistic actions of % fat and S/V ratio on the heat loss were manifested by observations as follows: minimum rectal temperature was higher In fat subjects (r=.600) and lower in subjects with a greater S/V ratio (=-.582), ${\Delta}T_R$ was smaller in fat subjects (r=-.738) and greater in subjects with a greater S/V ratio (r=.618). Temperature difference between body core and skin surface (minimum rectal temperature minus minimum MWST) showed a positive correlation with % fat (r=.600) and a negative correlation with S/V ratio (r=-.881). Decrease in the mean body temperature and heat debt, respectively, showed negative correlations with % fat and positive correlations with S/V ratio.

  • PDF

A PRELIMINARY EVALUATION OF UNPROTECTED LOSS-OF-FLOW ACCIDENT FOR A PROTOTYPE FAST-BREEDER REACTOR

  • SUZUKI, TOHRU;TOBITA, YOSHIHARU;KAWADA, KENICHI;TAGAMI, HIROTAKA;SOGABE, JOJI;MATSUBA, KENICHI;ITO, KEI;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.240-252
    • /
    • 2015
  • In the original licensing application for the prototype fast-breeder reactor, MONJU, the event progression during an unprotected loss of flow (ULOF), which is one of the technically inconceivable events postulated beyond design basis, was evaluated. Through this evaluation, it was confirmed that radiological consequences could be suitably limited even if mechanical energy was released. Following the Fukushima-Daiichi accident, a new nuclear safety regulation has become effective in Japan. The conformity of MONJU to this new regulation should hence be investigated. The objectives of the present study are to conduct a preliminary evaluation of ULOF for MONJU, reflecting the knowledge obtained after the original licensing application through CABRI experiments and EAGLE projects, and to gain the prospect of in-vessel retention for the conformity of MONJU to the new regulation. The preliminary evaluation in the present study showed that no significant mechanical energy release would take place, and that thermal failure of the reactor vessel could be avoided by the stable cooling of disrupted-core materials. This result suggests that the prospect of in-vessel retention against ULOF, which lies within the bounds of the original licensing evaluation and conforms to the new nuclear safety regulation, will be gained.

Effects of Precooling and Packaging Methods on Quality of Asparagus Spears during Simulated Distribution (아스파라거스의 모의 유통 과정에서 예냉 방법과 포장 조건이 품질에 미치는 영향)

  • Yoon, Hyuk Sung;Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2018
  • This study was conducted to determine effects of precooling and storage methods on asparagus spears' quality such as changes of fresh weight and color during simulated export distribution. Two types of precooling methods, air cooling and hydrocooling, were applied prior to packaging by comparing with no precooling as a control. Asparagus spears were packed with oxygen transmission rate (OTR) film for modified atmosphere packaging (MAP) and perforated (PF) film for a conventional packaging. All treatments were stored at $8^{\circ}C$ for 20 hours, and subsequently at $4^{\circ}C$ by final storage day, which is simulated distribution temperature condition from Yanggu, Korea to Shimonoseki, Japan. The half cooling time was 12 minutes for air cooling and 15 seconds for the hydrocooling, indicating precooling process of asparagus spears faster with the hydrocooling. Rates of respiration and ethylene production were lowest with hydrocooling. Fresh weight loss was higher, approximately 11%, at the control condition in conventional storage, compared with the MAP, less than 0.5%. Carbon dioxide and oxygen content in the MAP was in the permissible ranges for asparagus spears under recommended CA/MA conditions under both the air cooling and hydrocooling. Ethylene content in the film package was lower with the precooling treatment. Firmness of stems was lowest with the hydrocooling prior to the MAP. Visual quality, off-odor, and hue angle value were best with hydrocooling prior to the MAP. In conclusion, the combination of hydrocooling with the MAP is effective in preserving quality during the export distribution process.

Effects of Ice Cooling Storage on Chemical Components in Vegetable Corn (풋옥수수의 얼음 저장이 종실성분 변화에 미치는 영향)

  • 손영구;김성열;김선림;황종진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.95-103
    • /
    • 1997
  • This experiment was carried out to obtain the basic information necessary to establish suitable postharvest handling techniques and to keep high quality of the sweet(Danok 2), supersweet(Cooktail 86) and waxy(Chalok 1) corn which are mainly consumed as vegetable in Korea. Vegetable corns were cooled with ice fragments in the insulation box immediately after harvest and stored in low temperature warehouse at 0 to 2$^{\circ}C$. During the 15 days short-term storage, changes of chemical components were compared with those of uncooled corns. The losses of moisture in kernels were as high as 7.4 to 24.4% in uncooled corns while those of ice cooled corns increased 0.4 to 0.5% of their weight. The ratio of pericarp and alcohol insoluble solid(AIS) content increased as the storage days prolonged in all treatments but increasing rates were much higher in uncooled samples. On the other hand, the total sugar loss during storage was the least in supersweet corn when they were cooled with ice fragments in insulation box. After 5 days storage, the ice cooled samples showed the highest free amino acid contents compare to those of uncooled and stored at room temperature (25 to 3$0^{\circ}C$) or low temperature warehouse, and ${\gamma}$-aminobutylic acid (GABA) which was known as a fuctional amino acid was detected in all three kinds of vegetable corns.

  • PDF

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Synthesis and high Temperature properties of Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel prepared by oxalate precipitation (Oxalate 침전법의 의한 Li$_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$spinel의 합성 및 고온특성)

  • 김세호;이병우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2000
  • Synthesis and high temperature phase stability of $_{1+x}$ Co$_{y}$ Mn$_{2-y}$ $O_4$(0$\leq$x$\leq$0.2,y=0,1/9,1/6) spinel, both the excess lithium and cobalt added, have been studied. The spinel was prepared by oxalate precipitation method as the wet chemical process. Oxalate derived spinel was synthesized by heating of precipitates at temperature lower than $600^{\circ}C$. As a result of the TG-DTA and XRD analysis of prepared and quenched powders, it was found that reversible phase transitions started at temperatures $T_1$, $T_2$$T_{2'}$. The transitions involved weight (oxygen) loss and gain during heating and cooling. The effects of Li excess and Co doping on the spinel lattice constant, phase stability and transition temperatures of the prepared powders are investigated. This study would provide important data for determining the spinel preparation process such as synthesis temperature and cooling speed.

  • PDF

The Effects of Partial Substitution of Mo and Heat Treatment on the Electrode Characteristics of ZrV0.1Mn0.7Ni1.2 Hydrogen Storage alloy (Ni-MH 2차 전지용 ZrV0.1Mn0.7Ni1.2 수소저장합금의 전극특성에 미치는 Mo의 부분치환과 열처리의 영향)

  • Han, Dongsoo;Oh, Myunghark;Jeong, Chigyu;Chung, Wonsub;Kim, Ingon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • Recently Zr-based $AB_2$ type hydrogen absorbing alloy has received much attention as a negative electrode material for the Ni-MH batteries because of its high capacity. In this study $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy was chosen and the effects of heat treatment and a partial substitution of the Mo in Mn site on the various electrode properties were investigated. The alloys was prepared by arc melting (as-cast sample). Some of them were heat treated at $1,100^{\circ}C$ for 4 hours. After this they were differentiated by the different cooling rates of slow cooling and quenching. Various electrode characteristics such as activation process, high rate dischargeability and self discharge characteristic were investigated with the three types of electrodes. It was found that heat treated alloys resulted in an increase in plateau flatness of P-C isotherms however both discharge capacity and high rate capability were decreased. And the partial substitution of Mo for Mn in $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy improved the self-discharge characteristic without the loss of discharge capacity (300mAh/g).

  • PDF

Numerical Study of the Heat Removal Performance for a Passive Containment Cooling System using MARS-KS with a New Empirical Correlation of Steam Condensation (새로운 응축열전달계수 상관식이 적용된 MARS-KS를 활용한 원자로건물 피동냉각계통 열제거 성능의 수치적 연구)

  • Jang, Yeong-Jun;Lee, Yeon-Gun;Kim, Sin;Lim, Sang-Gyu
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The passive containment cooling system (PCCS) has been designed to remove the released decay heat during the accident by means of the condensation heat transfer phenomenon to guarantee the safety of the nuclear power plant. The heat removal performance of the PCCS is mainly governed by the condensation heat transfer of the steam-air mixture. In this study, the heat removal performance of the PCCS was evaluated by using the MARS-KS code with a new empirical correlation for steam condensation in the presence of a noncondensable gas. A new empirical correlation implemented into the MARS-KS code was developed as a function of parameters that affect the condensation heat transfer coefficient, such as the pressure, the wall subcooling, the noncondensable gas mass fraction and the aspect ratio of the condenser tube. The empirical correlation was applied to the MARS-KS code to replace the default Colburn-Hougen model. The various thermal-hydraulic parameters during the operation of the PCCS follonwing a large-break loss-of-coolant-accident were analyzed. The transient pressure behavior inside the containment from the MARS-KS with the empirical correlation was compared with calculated with the Colburn-Hougen model.

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.