• 제목/요약/키워드: Cooling load forecast

검색결과 13건 처리시간 0.024초

퍼지 논리를 이용한 일일 냉방부하 예측에 관한 연구 (A Study on Daily Cooling Load Forecast Using Fuzzy Logic)

  • 신관우;이윤섭
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.948-953
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system are possible solutions to settle this problem. In this study. the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested, then the method of forecasting the cooling load using fuzzy logic is suggested by simulating that the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated, and it is shown that the forecasted data approach to the actual data. Operating the ice-storage system by the forecast of cooling load with night electric power will improve the ice-storage system efficiency and reduce the peak electric power load during the summer season as a result.

빙축열 시스템의 지능형 냉방부하예측에 관한 연구 (The Study on Intelligent Cooling Load Forecast of Ice-storage System)

  • 고택범
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2061-2065
    • /
    • 2008
  • In the conventional operation of ice-storage system based on operator's experience and judgement, the failure in forecast of cooling load occurs frequently due to operator's misjudgement and unskilled operation. This study presents the method of constructing self-organizing fuzzy models which forecast tomorrow temperature, humidity and cooling load periodically for economic and efficient operation of ice-storage system. To check the effectiveness and feasibility of the suggested algorithm, the actual example for forecasting temperature, humidity and cooling load of ice- storage system in KEPCO training institute, Sokcho, is examined. The computer simulation results show that the accuracy of temperature, humidity, cooling load forecast of the suggested algorithm is higher than that of the conventional methods.

신경회로망을 이용한 냉방부하예측에 관한 연구 (The Study on Cooling Load Forecast using Neural Networks)

  • 신관우;이윤섭
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구 (Experimental Study on Cooling Load Forecast Using Neural Networks)

  • 신관우;이윤섭;김용태;최병윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

제주계통의 기온변화 민감도를 반영한 주말 전력수요예측 (A Study on the Weekend Load Forecasting of Jeju System by using Temperature Changes Sensitivity)

  • 정희원;구본희;차준민
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.718-723
    • /
    • 2016
  • The temperature changes are very important in improving the accuracy of the load forecasting during the summer. It is because the cooling load in summer contribute to the increasing of the load. This paper proposes a weekend load forecasting algorithm using the temperature change characteristic in a summer of Jeju. The days before and after weekends in Jeju, when the load curves are quite different from those of normal weekdays. The temperature change characteristic are obtained by using weekends peak load and high temperature data. And load forecasted based on the sensitivity between unit temperature changes and load variations. Load forecast data with better accuracy are obtained by using the proposed temperature changes than by using the ordinary daily peak load forecasting. The method can be used to reduce the error rate of load forecast.

냉방전력수요분석 및 관리방안 (ANALYSIS AND MANAGEMENT OF SUMMER COOLING LOAD)

  • 남정일;김문덕;이윤섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.152-155
    • /
    • 1991
  • The analysis and forecast of summer cooling load is one of the major concerns of utility company(KEPCO). In this paper, various methodologies to assess the weather sensitive load are introduced and the cause of remarkable growth of the summer cooling load in the last years are analized. To establish the effective measures to migrate the peak building by the summer cooling, a number of practical institutional policies are offered for future implementation.

  • PDF

빙축열 시스템의 지능형 냉방부하예측에 관한 연구 (The Study on Intelligent Cooling Load Forecast of Ice-storage System)

  • 고택범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1539-1540
    • /
    • 2008
  • 운전자의 경험과 판단에 전적으로 의존하는 빙축열 시스템의 기존 운전방식에서는 운전자의 그릇된 판단과 미숙한 운전으로 인해 과잉 축열이나 냉방공급량 부족현상이 자주 초래된다. 본 논문에서는 경제적이고 효율적인 빙축열 시스템의 운용을 위해 다음날의 구간별 온도, 습도와 냉방부하를 예측하는 자기구성퍼지모델 구축방안을 제안한다. 제안된 방법의 성능과 실제 적용가능성을 검증학기 위하여 한국전력 속초 생활연수원을 대상으로 제안된 방법과 신경회로망, 퍼지모델, 선형회귀모델 등을 이용한 기존의 방법을 적용하여 구한 냉방부하, 온도, 습도의 예측정확도를 비교 분석한다.

  • PDF

건구온파를 오인한 장기최대전력수요예측에 관한 연구 (Long-Term Maximum Power Demand Forecasting in Consideration of Dry Bulb Temperature)

  • 고희석;정재길
    • 대한전기학회논문지
    • /
    • 제34권10호
    • /
    • pp.389-398
    • /
    • 1985
  • Recently maximum power demand of our country has become to be under the great in fluence of electric cooling and air conditioning demand which are sensitive to weather conditions. This paper presents the technique and algorithm to forecast the long-term maximum power demand considering the characteristics of electric power and weather variable. By introducing a weather load model for forecasting long-term maximum power demand with the recent statistic data of power demand, annual maximum power demand is separated into two parts such as the base load component, affected little by weather, and the weather sensitive load component by means of multi-regression analysis method. And we derive the growth trend regression equations of above two components and their individual coefficients, the maximum power demand of each forecasting year can be forecasted with the sum of above two components. In this case we use the coincident dry bulb temperature as the weather variable at the occurence of one-day maximum power demand. As the growth trend regression equation we choose an exponential trend curve for the base load component, and real quadratic curve for the weather sensitive load component. The validity of the forecasting technique and algorithm proposed in this paper is proved by the case study for the present Korean power system.

  • PDF

계절성과 온도를 고려한 일별 최대 전력 수요 예측 연구 (Electricity Demand Forecasting for Daily Peak Load with Seasonality and Temperature Effects)

  • 정상욱;김삼용
    • 응용통계연구
    • /
    • 제27권5호
    • /
    • pp.843-853
    • /
    • 2014
  • 급증하고 있는 전력수요에 대한 신뢰성 있는 예측은 합리적인 전력수급계획 수립 및 운용에 있어서 매우 중대한 사안이다. 본 논문에서는 여러 시계열 모형의 비교를 통해 전력수요량과 밀접한 연관성이 있는 온도를 어떠한 형태로 고려할 것인지, 또한 4계절이 뚜렷하여 계절별 기온 차가 많이 나는 우리나라의 특성을 어떻게 고려할 것인지에 대하여 연구하였다. 모형 간 예측력을 비교하기 위하여 Mean Absolute Percentage Error(MAPE)를 사용하였다. 모형의 성능비교 결과는 냉 난방지수와 계절요인을 동시에 고려하면서 큰 변동성을 잘 고려해줄 수 있는 Reg-AR GARCH 모형이 가장 우수한 예측력을 나타냈다.