• Title/Summary/Keyword: Cooling load factor

Search Result 73, Processing Time 0.022 seconds

AN EVALUATION OF ENERGY PERFORMANCE IN SUPER HIGH-RISE APARTMENT HOUSING WITH EXTERIOR WINDOW TYPES

  • Sang-Ho Lee;Yong-Ho Park;Jong-Chan Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1637-1642
    • /
    • 2009
  • This study evaluates the energy performance of super high-rise residential buildings with e-QUEST simulation and calculates the annual cooling and heating load. The result of this study have concluded that the most influential factor is the characteristics of the window and also suggest the most efficient window system from the result of calculation of different glasses' cooling and heating load. The result of this study shows that The most efficient method to enhance the energy performance is to use low reflective 3 pairs Low-E glass and Low-E coating(inside of outer glass) pair glass.

  • PDF

Factor Analysis on Exhaust Gas Emissions of Small DI Diesel Engine (직접분사식 소형 디젤엔진의 배기배출물에 대한 인자분석적 고찰)

  • JANG, Se-Ho;KIM, Yeong-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.586-592
    • /
    • 2017
  • This study analyzed the effect of four control factors, RPM, load, EGR rate and cooling water temperature on the exhaust emissions of the small DI diesel engine. The amount of NOx and smoke emissions were measured through experiments for three levels of four control factors according to orthogonal array table, and the effect of four factors on NOx and smoke emissions was analyzed quantitatively. The main results obtained in this study are summarized as follows: 1. RPM, load and EGR rate have a great influence on NOx and smoke emissions, and the effect of cooling water temperature is negligible. 2. As RPM and load increases NOx emission increases and decreases sharply as the EGR rate increases. 3. Smoke emission decreases or increases randomly according to RPM and load, but increases sharply in proportion to the EGR rate. 4. EGR rate has the greatest effect on NOx and smoke emissions by more than 60% of contribution to variance, especially in the case of NOx emission, EGR rate represents a significant result even under the confidence level of 99% on ANOVA.

The Characteristics of a Bypass Air Conditioning System for Load Variation (부하변동에 대한 바이패스 공조시스템의 특성)

  • 김보철;신현준;김정엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; an outdoor air bypass, a mixed air bypass and a return air bypass system. What makes the return air by pass system more effective is that it directs all of moist outdoor air through the cooling coil. The bypass air conditioning system can maintain indoor R.H (Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. When a design sensible load (the ratio of sensible load to total sensible load) is 70 percent (at this time, RSHF (Room Sensible Heat Factor) . 0.7), indoor R.H was maintained 59 percent by the return air bypass system, but 65 percent by the conventional CAV air conditioning system (valve control system). The bypass air conditioning system can also improve IAQ (Indoor Air Quality) in many buildings where the number of air change is high.

feasibility Study in Application on Load Management of Cooling or Heating Systems (${\cdot}$난방 시스템의 부하관리 프로그램 적용 타당성 검토)

  • Son H.S.;Kim H.C.;Kim H.J.;Hur D.R.;Park J.B.;Shin J.R.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.686-688
    • /
    • 2004
  • We suggest that the core factor which can be established successfully pushing ahead with domestic load management program is finding and keeping management of controllable load resources. We know that load management is mostly the maximum demand power management and participation of DLC program. This paper suggests the way coping with load management suggesting model which air conditioning and heating load facilities are applied to DU program.

  • PDF

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

The effect on the seasonal performance of an inverter compressor with higher and lower operating range (인버터 압축기의 저속과 고속운전범위가 계절성능에 미치는 영향)

  • 박윤철;하도용;민만기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study was conducted on the effect of compressor capacity control range of heat pump on the seasonal energy efficiency ratio with variation of the maximum and minimum compressor input frequencies. To obtain seasonal energy efficiency ratio, steady state test at the maximum, minimum and intermediate compressor speed and cyclic test at the minimum compressor speed should be conducted. Maximum input frequency was varied to 95Hz, 105Hz, and 115Hz, and the minimum input frequency was varied to 35Hz, 45Hz, and 55Hz. The seasonal energy efficiency ratio increased as the input frequency of the compressor decreased. The maximum input frequency had only slight effects on the SEER.

  • PDF

A Study on the outside rotor type double squirrel cage Induction motor (외측회전형 이중 농형 유도전동기에 관한 연구)

  • 김현수;배철오;안병원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.776-782
    • /
    • 2003
  • This paper describes a newly developed double squirrel cage induction motor in which the rotor is located outside the stator. The outside rotor type brushless dc motor has been used for VTR's head drum and PC's cooling fan, but this kind of induction motor has not been developed yet. The parameters of outside rotor type induction motor were measured from the locked rotor test and no load test. It is possible to determine the parameters which are presented in the steady-state equivalent-circuit of the outside rotor type induction motor. Load test of induction motor was carried out using a dynamometer. For the characteristics of torque, efficiency, power factor and output. the developed double squirrel cage induction motor is compared with the ordinary induction motor It is believed that the results of this paper can be used for the development of the outside rotor type induction motor.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

Optimized Design of Air Controlling System in Air Defense Gun Systems of Wheeled Vehicle (차륜형 대공포의 냉방기 최적화 설계)

  • Jeon, Ki-Hyun;Lee, Boo-Hwan;Lee, Dong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1047-1051
    • /
    • 2013
  • A modern combat vehicle needs to have a separate air-conditioning unit, although new combat systems tend to employ an integrated heating, cooling, and ventilating system. In this study, we investigated an air conditioning unit for an armored combat wheeled vehicle as a special use and military specification and performed a case study of a unique military combat vehicle. By using Fluent software, we tried to determine a suitable air ducting method and its location in the armored combat vehicle. The results show that an air-conditioning unit is one of the best solutions for wheeled vehicles that are not equipped with a cooling unit for their crews, and it can be applied to similar types of armored vehicles.