• 제목/요약/키워드: Cooling heating energy consumption

검색결과 277건 처리시간 0.025초

ICT를 활용한 병원건물의 에너지 절감방안 연구 (Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings)

  • 이정환;한영도;김동욱
    • 한국콘텐츠학회논문지
    • /
    • 제18권1호
    • /
    • pp.422-430
    • /
    • 2018
  • 최근 유가 상승과 건물 에너지 소비 증가는 에너지 자원 해외 의존도가 높은 우리나라에 큰 부담이 되고 있다. 이런 상황에서 에너지 소비량의 40% 수준을 차지하는 빌딩건물의 에너지절감은 매우 중요한 이슈가 되는데, 본 연구는 ICT를 활용하여 건물에너지 소비량 및 전력사용요금 절감을 하는 최적제어방법을 구현한 실증 분석을 병원을 대상으로 수행하였다. 먼저 기존의 냉난방용 흡수식 냉온수기와 급탕용 보일러시설 일부를 수축열 히트펌프로 대체하고 사용하는 요금제의 조정을 통해 에너지소비량을 줄이고 요금을 절감하였다. 여기에 환경(외기온도, 사용량 증감 등) 변화를 고려한 ICT 기반 최적제어 기능을 추가적으로 적용함으로 기존 설비 대체 중심의 에너지절감 방법과 ICT 기반의 최적제어방법까지 고려한 효과를 분석하였다. 그 결과 본 연구에서 병원 대상의 최적제어방법은 에너지효율화 설비 적용으로 인한 절감량(53.6%)에 최적자동제어 효과(18.2%)까지 추가적으로 절감할 수 있는 것을 확인하였다. 본 연구 결과를 바탕으로 건물 에너지 절감 성과를 높이는 다양한 방안을 검토해 볼 수 있을 것이다.

빛환경 및 냉난방환경 기반 광선반 성능평가 연구 (Performance Evaluation of Light-Shelf based on Light Enviorment and Air Conditioner Enviorment)

  • 전강민;이행우;서장후;김용성
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.47-55
    • /
    • 2016
  • Purpose: As the energy consumed by buildings increases, there is a growing need for studies and technology development to address this issue. One of the solutions to excessive energy use by buildings is the light-shelf, which is a natural lighting system enabling efficient reduction in light energy, and research in this area has been intensive. However, most of the studies about the light-shelf are limited to the light environment, and thus the application of their findings to an actual environment in the form of a design may be problematic. Therefore, the purpose of the present study is to provide fundamental data for light-shelf design by carrying out a light-shelf performance evaluation on the basis of the light environment and the heating and cooling environment. Method: In the present study, a testbed was established to conduct a light-shelf performance evaluation by measuring the electric power consumption of lighting and heating and cooling devices depending on the existence of a light-shelf and its angle. Result: The findings of the present study are as follows: 1) With respect to the uniformity of the indoor light environment amenity, the optimum angle of a light-shelf was found to be $30^{\circ}$ for the summer solstice and the winter solstice. 2) With respect to the reduction of electric power consumption by indoor lighting devices, the optimum light-shelf angle at the summer solstice is $30^{\circ}$, at which time electric power consumption may be reduced by 10.2% in comparison with when no light-shelf is applied. However, at the winter solstice, a light-shelf may increase the energy consumption for lighting in comparison with when no light-shelf is applied, and this should be taken into account in the design of a light-shelf. 3) In terms of reducing the electric power consumption of heating and cooling devices, the optimum angle of a light-shelf was found to be $30^{\circ}$ for the summer solstice, while a light-shelf is inappropriate for the winter solstice since a light-shelf creates shade and thus increases the heating energy consumption. 4) To summarize the findings above, the optimum angle of a light-shelf is $30^{\circ}$ for the summer solstice, but the installation of a light-shelf may in some circumstances increase the energy consumed by lighting devices as well as by heating and cooling devices. Therefore, more studies and technology development may need to be performed to solve the problem of increased energy consumption at the winter solstice.

사무소건물의 에너지절약형 냉방시스템 성능분석에 관한 연구 (A Study on the Perfomance Analysis of Low Energy Cooling Systems in Office building)

  • 박창봉;이언구
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.89-94
    • /
    • 2010
  • A large portion of the energy cost of a building is cooling and heating to maintain a comfortable indoor environment. Air conditioning is now one of the important parts in the building design, as increase in energy consumption and pollutant emission in energy conversion process. In this study, elements that affects the energy consumption of model building are identified and the perfomance analysis of the alternative a Low Energy Cooling Systems considering characteristics of model building and energy saving performance is analyzed. In this study, elements that affect the energy consumption of office building are identified and energy saving performance of the alternative air conditioning system is analyzed. As a result, applied to earn and suggest basic data for energy saving measures. In this study, EnergyPlus simulation program was used to evaluate the energy load when alternative Low Energy Cooling Systems are applied to the model building. The reliability of simulation program is verified by comparing actual energy load from operation data of building management office and predicted energy load using simulation program. For Low Energy Cooling System application which considers the purpose and characteristics of the building, reasonable and energy-saving air conditioning method obtained by analyzing energy consumption elements for each expected air conditioning methods is used to deduct result of this study.

Inverse Model Toolkit을 이용한 리모델링 건축물의 에너지 성능평가 사례 (A Case Study on Energy Performance Analysis of Retrofitted Building Using Inverse Model Toolkit)

  • 권경우;이석주;박준석
    • 설비공학논문집
    • /
    • 제26권8호
    • /
    • pp.394-400
    • /
    • 2014
  • Several models and methods have been developed to verify the improvement of energy performance in retrofit buildings. The verification is important to confirm the effectiveness of new technologies or retrofits. Inverse model toolkit proposed by ASHRAE evaluates the changes of the energy performance of retrofit buildings by using actual energy consumption data. In this study, the inverse model toolkit was used to analyze heating and cooling energy performance of an office building. Analyzed coefficients of correlation of actual energy consumption with estimated energy consumption was above 0.92 and well fitted. It was confirmed that energy consumption of natural gas decreased by 43.4% and also that electricity decreased by 13.8%, after the retrofit of the case building. For the energy usage, cooling energy was increased by 7.4%, heating energy was decreased by 42.3%, hot water and cooking were increased by 3.4%, lighting and electronics were decreased by 19.3%, and the total energy was decreased by 18.9%.

대형병원 건물에 마이크로 가스터빈 적용을 위한 에너지성능 및 경제성 평가 (The Energy Performance & Economy Efficiency Evaluation of Micro Gas Turbine Installed in Hospital)

  • 김병수;홍원표
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.8-13
    • /
    • 2009
  • Feasibilities of the application of a micro gas turbine cogeneration system to a large size hospital building are studied by estimating energy demands and supplies. The energy demand for electricity is estimated by surveying and sorting the consumption records for various equipment and devices. The cooling heating, and hot water demands are further refined with TRNSYS and ESP-r to generate load profiles for the subsequent operation simulations. The operation of the suggested cogeneration system in conjunction with the load data is simulated for a time span of a year to predict energy consumption and gain profile. The simulation revealed that the thermal efficiency of the gas turbine is about 30% and it supplies 60% of the electricity required by the building. The recovered heat can meet 56% of total heating load and 67% of cooling, and the combined efficiency reaches up to 70%.

대학 캠퍼스 냉·난방시스템 최적화 방안 연구 (A Study on the Optimization of Heating and Cooling System in University Campus)

  • 박소연;박효순;이상혁;김지연;홍성희
    • KIEAE Journal
    • /
    • 제10권6호
    • /
    • pp.139-144
    • /
    • 2010
  • The demands are increasing for the efficient heating and cooling system and thermal comfort environment because of changes in climate and environment, and deterioration of buildings and facilities can cause education budget to increase. So the study to apply heating and cooling system to university is urgently needed to improve an optimum energy saving system, educational environment and convenience of maintenance. For this reason, we selected a university campus in Seoul then came to understand the current situation and found some problems. We drew alternatives from comparative analysis of them. It selects representative building and carries out economic analysis to evaluate characteristics of energy consumption and economics on each type of heating and cooling system. As a result we drew the optimum system from those processes as previously stated. We studied 3 available systems, absorption chiller, EHP(Electric Heat Pump) and GHP(Gas Engine Heat Pump). According to LCC analysis suppose that the value of EHP is 1, it came out that the value of absorption chiller is 1.5 and the value of GHP is 2.2. This study, suggesting the optimum heating and cooling system, will support educational and research activities furthermore effect to maximize energy efficiency. Ultimately it is expected that it will contribute to make eco-friendly Green Campus.

에너지절약형 주택에서의 단열차양 적용과 제어방법에 따른 냉난방부하 분석 (An Analysis of Heating and Cooling Loads by Insulated Shades and Control Method in an Energy Saving Apartment)

  • 박선효;권경우;손장열
    • 설비공학논문집
    • /
    • 제22권6호
    • /
    • pp.392-397
    • /
    • 2010
  • Energy loss from windows accounts for large scores of heating and cooling loads also in energy saving apartments that is reduced over 30% of total energy consumption. Movable reflective insulations, insulation shutters, blinds, insulated shades are used to reduce energy loads from windows. In this study, energy saving performance of insulated shades was simulated by control methods. According to installation of insulated shades, heating loads were decreased about 10.5~11.3%, and cooling loads are decreased about 29.1~38.3% on an energy saving apartment. The heating peak load was reduced about 9.5% by insulated shades and the cooling peak load was reduced about 25.7~31.5%. In the case of insulated shades with automatic control system, simple time schedule control system would be more efficient than outdoor detection control system that should use several sensors.

병원 건물의 에너지 부하모델 개발 (Development of Energy Demand Models for Hospitals)

  • 박화춘;정모
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.636-642
    • /
    • 2009
  • Energy consumption data are surveyed and measured to develop energy demand models for hospital buildings as part of a complete package. Daily consumption profiles for electricity, heating, cooling and hot water are surveyed for 14 carefully chosen hospitals to establish energy demand patterns for a time span of a year. Then the hourly demand patterns of the 4 loads are field-measured for different seasons and statistically analyzed to provide higher resolution models. Used in conjunction with energy demand models for other types of buildings, the high resolution of 8760 hour energy demand models for a hospital for a typical year will serve as building blocks for the comprehensive model that allows the estimation of the combined loads for arbitrary mixtures of buildings.

히트펌프 성능 평가 동향과 국내 지열원 히트펌프 성능 평가 규격 및 제도 분석 (Analysis on the Performance Evaluation Trends of Heat Pumps and the Test Standards of a Geothermal Heat Pump in Korea)

  • 강신형;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.31-38
    • /
    • 2017
  • The heating and cooling air conditioning field has been increasing the problems of energy consumption and global warming in the world. A geothermal heat pump has been known as one of the highest efficient heating and cooling system. In this study, the analysis about the test standards of the geothermal heat pump of the Republic of Korea was executed. From the research, the following results were given. It is needed to address the domestic test standard for direct heat exchange geothermal heat pump. Water to air multi geothermal heat pump test standard was only developed in Korea. The test standard to calculate a seasonal energy efficiency ratio for cooling period and heat seasonal performance factor for heating period should be newly developed to estimate actual annual energy consumption and $CO_2$ emission.

건물 에너지 소비량에 영향을 미치는 옥상녹화시스템 설계변수 평가에 관한 사례 연구 (A Case Study on the Design Variables Evaluation of Green Roof System effecting on Building Energy Conservation)

  • 최정민
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.41-48
    • /
    • 2015
  • This study is to find out the major design variables of Green roof system effecting on the building energy consumption. Therefore, in three categories of green roof system, namely, foliage layer, soil layer and irrigation, 10 design variables are selected and simulated with one-story case building. Simulation is carried out with Design Builder and EnergyPlus. Finally, it was found out the effects of major variables affecting on the building heating and cooling energy and how they are affecting on the heating and cooling seasons respectively.