• Title/Summary/Keyword: Cooling equipment

Search Result 409, Processing Time 0.023 seconds

Cooling Cycle for Energy Saving (에너지 절약용 냉방사이클)

  • Lee, Hung Joo;Kim, Yong Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.116-127
    • /
    • 1989
  • Research on reheating cooling cycle and its practical application have been made to prevent unequalized distribution of temperature and humidity of room due to lack of supply air volume and dewdrops on supply diffusers to be taken place as a result of lower temperature of supply air than that of dew point of room air in cooling cycle of constant air volume, single duct, single zone and draw-through fan type. In view of the fact that human body is insensitive to humidity, it is possible not only to construct the complete non-reheating cooling cycle by increasing the humidity point allowable with the deduction of occupant's sense of pleasantness minimizing, but also to get cooling cycle decreasing the reheating quantity if the humidity exceeds the point allowable. In addition, it is possible to save maximum 8% in electric energy for cooling in cooling system by constructing non-reheating cooling cycle instead of reheating cooling cycle and by increasing the relative humidity of room from 50% to 65% in case efficiency and air pressure of cooling system are low. It is also possible to get an optimum cooling cycle by determining the room humidity in consideration of pleasantness of occupants and conservation rate of electric energy if the cooling capacity, efficiency and total pressure of cooling equipment are fixed.

  • PDF

Evaluation of Aisle Partition System's Thermal Performance in Large Data Centers for Superior Cooling Efficiency (데이터센터의 공조효율 향상을 위한 공조파티션시스템 성능평가에 관한 연구)

  • Cho, Jin-Kyun;Jeong, Cha-Su;Kim, Byung-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.205-212
    • /
    • 2010
  • In a typical data center, large numbers of IT sever racks are arranged multiple rows. IT environments, in which extensive electronic hardware is air-cooled, cooling system inefficiencies result when heated exhaust air from equipment prematurely mixes with chilled coolant air before it is used for cooling. Mixing of chilled air before its use with heated exhaust air results in significant cooling inefficiencies in many systems. Over temperatures may not only harm expensive electronic equipment but also interrupt critical and revenue generating services. Cool shield is a cost effective aisle partition system to contain the air in cold aisles and hot aisles of an IT server room. This paper focuses on the use of performance metrics for analyzing aisle partition system in data centers.

Application of the Geothermal Hybrid System for Huge Size Common Structures with Heating & Cooling System (지열 Hybrid System 개발을 통한 대형 공동구조물 지열에너지 적용성 평가)

  • Park, Si-Sam;Na, Sang-Min;Park, Jong-Hun;Rhee, Keon-Joong;Kim, Tae-Won;Kim, Sung-Yub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.588-591
    • /
    • 2009
  • Ground source heat pump system; GSHPs is close to most practical use for early stage investment cost and energy efficiency in new renewable energies, and currently considered utilizing to the heat and cooling system of a building. Particularly, the case to utilize 'Standing Column well heat source gathering method' in the open standards process to have the excellent capability of gathering geothermal source is increased. But the research for the optimal design technology and the assessment of a pollution level of the ground to utilize a single well for gathering geothermal is insignificant and the design is insufficient. The heating and cooling system and the equipment to utilize a large size residential development to have over 1000 households have not developed yet. Therefore, our company developed 'geothermal hybrid system' which can construct the heat and cooling system using geothermal energy for a large size residential development of over 1000 households and conducted the evaluation of economic feasibility. Moreover we developed automatic equipment for gathering geothermal source and PLC (Programmable logic controller) to have optimal efficiency and FCU (fan coil unit) considering the floors of large size apartments.

  • PDF

Experimental Study on Optimal Operation Strategies for Energy Saving in Building Central Cooling System (건물 중앙냉방시스템의 에너지절감을 위한 최적운전 방안에 관한 실험적 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4610-4615
    • /
    • 2013
  • In this study, optimal operation strategies to save the electric energy and power price in the building central cooling system is researched by experiments. The optimal strategies of demand response control and outdoor temperature reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested optimal control method shows better responses in the power price and energy consumption in comparison with the conventional one and saves energy consumption by 9.5% and electronic price by 15.7%, respectively.

A Study on Optimal Operation of Cooling System Using Dynamic Programing (동적 계획법을 이용한 냉방시스템 최적운전에 관한 연구)

  • Han, Kyu-Hyun;Yoo, Seong-Yeon;Lee, Je-Myo;Lee, Il-Su
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1061-1064
    • /
    • 2009
  • The objective of this study is to find the optimal operational planning of the hybrid cooling system, which is combined by ice storage system and the absorption chiller. The optimization technique used in this study is dynamic programming. The objective function is summed cost during a day including charge and discharge periods of ice storage system and operation time of absorption chiller. Assuming that initially ice storage tank is stored fully and the cooling load is perfectly predicted for the operational planning. This method provides the most efficient and economic combination of equipment operational planning for cooling with respect to energy consumption cost.

  • PDF

Water-Cooling System of HVDC System (HVDC 시스템의 수냉식 냉각 시스템)

  • 김찬기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.257-267
    • /
    • 1999
  • This paper deals with the water cooling system of HVDC(High Voltage Direct CUlTentJ. It is generally accepted that water is a veη effective medium to remove heat losses from any type of equipment. Because of this benefits the water cooling method is used in HVDC. The water cooling system consists of a heat exchanger, circulation pump and a connecting pipe. According to thYI1stor temperature level. thyristor junction temperature is controlled by controlling the f fan of exchanger. In this paper. the water cooling system of HVDC system is analyzed and estimated.

  • PDF

Design and Application of Forced Cooling System in Steam Turbine (증기터빈 강제냉각 장치의 설계 및 적용)

  • 김효진;류승우;강용호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.25-32
    • /
    • 1998
  • The forced cooling system is designed to shorten the overhaul time of steam turbine, which is important in view of economic concern of utility companies, Forced cooling of the hot turbine is achieved by suction of air flow into the turbine after the turbine shuts down. The heat transfer process by suction of air flow can cause thermal stress due to the thermal gradients. In this paper, the analysis of heat transfer is performed to calculate the air flow rate. Based on the prediction of cyclic fatigue damage and the experience, the cooling equipment is designed for shortening the cooling time of steam turbine.

  • PDF

Analysis of Office Building HVAC System Drawings (사무용 건축물 공조설비 설계도서 분석)

  • Park, Jong-Il;Kim, Se-Hwan;Kim, Dong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.776-781
    • /
    • 2007
  • Optimized capacity of equipments are essential for energy saving and low cost construction and operation. So we must use proper design data for HVAC system design. We investigated for architectural data, equipment capacity, cooling and heating load design criteria of 52 office buildings. Following research results were obtained by carrying out each task. Office building effective area rate is 63%. The average building cooling load of South Korea is $140W/m^2$ and average heating loads in Seoul and Pusan area are $120{\sim}130W/m^2$ and $70{\sim}80W/m^2$. We also analysised HVAC design criteria. Person ratio in effective building area is $0.2person/m^2$, sensitive and latent heat loads of a person are 60W and 65W, light and equipment loads of office buildings are $25W/m^2$ and $20W/m^2$.

Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms (통신기지국용 하이브리드 냉방기의 성능특성 연구)

  • Kim, Yong-Chan;Choi, Jong-Min;Kang, Hoon;Yoon, Joon-Sang;Kim, Young-Bae;Choi, Kwang-Min;Lee, Ho-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.