• 제목/요약/키워드: Cooling channel

검색결과 437건 처리시간 0.026초

4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구 (Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1))

  • 최용덕;김석범;이용진;김진곤;곽재수
    • 한국추진공학회지
    • /
    • 제14권4호
    • /
    • pp.32-38
    • /
    • 2010
  • 본 연구에서는 딤플이 설치된 유로, 립이 설치된 유로, 립과 딤플이 함께 설치된 유로에서의 열전달성능을 천이액정법을 이용하여 측정하였다. 실험에 사용된 유로의 종횡비(W/H)는 4이고, 립의 높이는6 mm, 립 간 거리(P/e)는 10, 립이 설치된 각도는 $60^{\circ}$이며, 딤플의 직경은 6 mm, 딤플 중심간 거리(s/D)는 1.2로 하였다. 레이놀즈 수는 30000-50000에 대해 실험을 수행하였다. 립이 설치된 유로에서는 경사 립에 의해 발생된 이차유동이 열전달 계수를 증가시켰고, 립과 딤플이 함께 설치된 유로에서는 립 사이에 설치된 딤플이 열전달 계수를 더욱 증가시켰다. 열전달계수는 립과 딤플이 복합 적용된 유로, 립이 적용된 유로, 딤플이 적용된 순으로 나타났고, 열성능계수도 립과 딤플이 복합 적용된 유로에서 크게 나타났다.

보론강 고온 성형 공정의 냉각 채널 설계 (Design of cooling channel in hot press forming process of Boron Steel)

  • 홍석무;유수열;박종규;윤석진;김기정;김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.367-370
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. In the study, the heat conductive die and the cooling channel were designed by the numerical simulation and the effect of three different parameters were determined to improve cooling characteristics.

  • PDF

신발형 리브의 형상변화가 열전달 및 압력 강하에 미치는 영향 (Effects of Geometry of a Boot-Shaped Rib on Heat Transfer and Pressure Drop)

  • 서재원;김준희;김광용
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.66-73
    • /
    • 2015
  • This paper deals with a parametric study on boot-shaped ribs in a rectangular cooling channel. Numerical analysis of the flow and heat transfer was performed using three-dimensional Reynolds averaged Navier-Stokes equations with the Speziale, Sarkar and Gatski turbulence model. The parametric study was performed for the parameters, tip width-to rib width, tip height-to-rib height, rib height-to-channel height, and rib height-to-width ratios. To assess the cooling performance and friction loss, Numsselt number and friction factor were defined as the performance parameter, respectively. The results showed that the cooling performance and friction loss were seriously affected by the four geometric parameters.

직선형 냉각채널에서의 압력손실에 대한 실험적 연구 (An Experimental Study on Pressure Loss in Straight Cooling Channels)

  • 윤원재;안규복;김홍집
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.94-103
    • /
    • 2016
  • 액체로켓엔진에서의 재생냉각 채널은 높은 온도의 연소가스로부터 연소실 내벽을 효율적으로 냉각하기 위해 사용되며, 냉각채널 설계를 위해서는 열전달 특성과 압력손실 특성을 미리 예측하여야 한다. 본 연구에서는 서로 다른 형상을 갖는 5개의 냉각채널을 설계하고, 커터와 엔드밀로 채널을 제작하였다. 채널을 흐르는 유속과 후단 압력조건을 달리하여 가공방법, 채널 형상, 유동조건에 따른 압력손실을 실험적으로 측정하여 해석결과와 비교를 수행하였다. 동일 형상 및 유동조건에서 커터로 가공된 채널이 엔드밀로 가공된 채널보다 압력손실이 적었다. 또한 채널 형상, 유동조건에 따라 실험결과와 해석결과의 압력손실 비가 달라짐을 확인할 수 있었다.

Numerical Evaluation of the Cooling Performance of a Core Catcher Test Facility

  • Lee, Dong Hun;Park, Ik Kyu;Yoon, Han Young;Ha, Kwang Soon;Jeong, Jae Jun
    • 에너지공학
    • /
    • 제22권1호
    • /
    • pp.8-16
    • /
    • 2013
  • A core catcher is considered as a promising engineered system to stabilize the molten corium in the containment during a postulated severe accident in a nuclear power plant. Conceptually, the core catcher consists of a carbon steel body, sacrificial material, protection material, and engineered cooling channel. The cooling capacity of the engineered cooling channel should be guaranteed to remove the decay heat of the molten corium. The flow in ex-vessel core catcher is a combined problem of a two-phase flow in the engineered cooling channel and a single-phase natural circulation in the whole core catcher system. In this study, the analysis of the test facility for the core catcher using the CUPID code, which is a three-dimensional thermal-hydraulic code for the simulation of two-phase flows, was carried out to evaluate its cooling capacity.

액체로켓엔진 추력실의 재생냉각 기관 설계 (A Study on the LRE Thrust Chamber Regenerative Cooling Design)

  • 김지훈;박희호;김유;황수권
    • 한국추진공학회지
    • /
    • 제6권4호
    • /
    • pp.25-35
    • /
    • 2002
  • 본 연구에서는 액체로켓의 엔진조건에 부합하는 재생냉각 시스템을 설계하는 방법을 다루었다. 정상상태에서 로켓 추력실에서의 열전달 과정은 연소가스로부터 벽면으로 대류와 복사가 이루어지고, 다시 연소실 벽을 통해 전도된 후 마지막으로 냉각제로 대류열전달 된다. criterial method와 integral method를 이용하여 열전달량을 구하고, 이를 이용하여 냉각채널을 설계하였으며, 러시아 냉각 시스템 설계 코드의 결과와 비교하였다. 복잡한 설계과정을 정형화된 logic을 구현하여 냉각 시스템 설계를 용이하게 하였으며, 설계변수를 변화시켜 얻어진 계산결과를 통하여 각 인자의 영향을 정성적으로 살펴보았다.

Influence of an Aspect Ratio of Rectangular Channel on the Cooling Performance of a Multichip Module

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.350-357
    • /
    • 2000
  • Experiments were performed by using PF-5060 and water to investigate the influence of an aspect ratio of a horizontal rectangular channel on the cooling characteristics from an in-line $6{\times}1$ array of discrete heat sources which were flush mounted on the top wall of the channel. The experimental parameters were aspect ratio of rectangular channel, heat flux of simulated VLSI chip, and channel Reynolds number. The chip surface temperatures decreased with the aspect ratio at the first and sixth rows, and decreased more rapidly at a high heat flux than at a low heat flux. The measured friction factors at each aspect ratio for both water and PF-5060 gave a good agreement with the values predicted by the modified Blasius equation within ${\pm}7%$. The Nusselt number increased as the aspect ratio decreased, but the increasing rate of Nusselt number reduced as the aspect ratio decreased. A 5:1 rectangular channel yields the most efficient cooling performance when the heat transfer and pressure drop in the test section were considered simultaneously.

  • PDF

곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석 (NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS)

  • 최남정;최윤호
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석 (CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR)

  • 인왕기;신창환;박주용;오동석;이치영;전태현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

다중 PCB 적층 모듈구조의 정보통신용 캐비넷 강제대류 냉각특성 연구 (Forced Convective Cooling Characteristics with Stacked Modules of Multi-PCBs' in Telecommunication Cabinet)

  • 김원태;김광수
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.230-239
    • /
    • 1996
  • A multi-faceted experimental investigation has been carried out to study the cooling performance for stacked modules in arrays of heat generating rectangular modules deployed along PCB's in the enclosed cabinet. The main parameters which have an important effect on cooling characteristics are flow velocity, channel spacing, installation of fan unit, attachment of heat sink, and acoustic noise. The results of individual effect are very helpful for the electronic packaging designer. In order to improve the cooling performance, it is certain that the enlargement of channel space is obviously effective, while this id disadvantageous in high density electronic packaging. Each of the paameters is quantitatively examined as cooling performance and the correlation of Reynolds number to Nusselt number is compared with previous study.

  • PDF