• Title/Summary/Keyword: Cooling and Heating Loads

Search Result 139, Processing Time 0.024 seconds

Study on the Optimum Design of a Heat Pump System Using Solar and Ground Heat (태양열 및 지중열원을 이용한 히트펌프 시스템의 최적이용법에 관한 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.509-514
    • /
    • 2012
  • In this research, a heat pump system with a heat source network is suggested which utilizes solar heat and ground heat as heat source for cooling and heating. This paper describes the summary of the suggested system and the results of the annual energy simulation. The heating and cooling loads, the electric consumption and the COP were calculated by TRNSYS 16 and evaluated in the cases of different local conditions and different system compositions. In the results, the superiority of the suggested system has been quantitatively evaluated comparing with the conventional heat pump system using one heat source. Furthermore, it was more significant in cold climate, in which the heating COP was 146% increased compared the air source heat pump system, than it in subtropical climate, 119% increased.

Simnlation of a Thermal Behavior in Solar Heating and Cooling System with respect to Demand Room Temperature (실내 설정온도에 따른 태양열 냉난방 시스템의 동적 거동 해석)

  • Jang, H.Y.;Lee, S.B.;Chung, K.T.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3446-3451
    • /
    • 2007
  • The thermal behavior of a building in response to heat input from an active solar space heating system is analysed to determine the effect of the variable storage tank temperature on the cycling rate, on and off temperature of a heating cycle and on the comfort characteristics of room air temperature. A computer simulation of the system behavior has been performed and verified by comparisons with various parameters. Especially, this study is focused on the effect of the system's performance when subjected to dynamic cooling loads. The heat input to the absorption system is provided by an array of solar collectors that coupled to a thermal storage tank.

  • PDF

Evaluation of thermal comfort and cooling loads for a multistory building

  • Lykartsis, Athanasios;B-Jahromi, Ali;Mylona, Anastasia
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The latest UK Climate Projections (UKCP09) show that mean daily temperatures will increase everywhere in the United Kingdom. This will significantly affect the thermal and energy performance of the current building stock. This study examines an institutional fully glazed building and looks into the changes in the cooling loads and thermal comfort of the occupants during the occupied hours of the non-heating period. Furthermore, it investigates the effect of relative humidity (RH) on thermal comfort. The Design Summer Year (DSY) 2003 for London Heathrow has been used as a baseline for this study and the DSY 2050s High Emissions scenario was used to examine the performance of the building under future weather conditions. Results show a 21% increase of the cooling loads between the two examined scenarios. Thermal comfort appears to be slightly improved during the months of May and September and marginally worsen during the summer months. Results of the simulation show that a relative humidity control at 40% can improve the thermal comfort for 53% of the occupied hours. A comparison of the thermal comfort performance during the hottest week of the year, shows that when the relative humidity control is applied thermal comfort performance of the 2050s is similar or better compared to the thermal comfort performance under the baseline.

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

Performance Simulation of Ground-Coupled Heat Pump(GCHP) System for a Detached House (단독주택 적용 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byong-Hu;Choi, Jong-Min;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.392-399
    • /
    • 2011
  • Ground-coupled heat pump(GCHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some work related to performance evaluation of GCHP systems for commercial buildings has been done, relatively little has been reported on the residential applications. The aim of this study is to evaluate the cooling and heating performances of a vertical GCHP system applied to an artificial detached house($117\;m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, borehole diameter, and ground thermal properties, etc. The cooling and heating performance simulation of the system was conducted with different prediction times of 8760 hours and 240 months. The performance characteristics including seasonal system COP, average annual power consumption, and temperature variations related to ground heat exchanger were calculated and compared.

Ventilation Load Reduction Plan Using Cool Tube System Case (Cool Tube System 사례를 활용한 환기부하 절감방안)

  • Jeong, Min Yeong;Park, Jin Chul;Yang, Young Kwon
    • Land and Housing Review
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • In this study, the case analysis data on underground temperature are presented. In addition, numerical analysis of the ventilation load reduction plan was derived according to the residence schedule change for the building with cool tube. The research scope and method are as follows. The overall system principle was examined through reviewing the theory of the Cool tube system. Case study and analysis were conducted. Numerical simulation was used to examine the change in energy usage. Also, the change of load energy in case of varying amount of ventilation was derived based on actual building room schedule. When the Cool tube system was applied to the residential buildings, the cooling load was reduced from 3,331 kW to 193 kW, which showed a reduction effect of about 90%.The heating load was reduced from 42,276kW to 32,575kW by 23%.Also, result shows that the cooling load decreased by 24% and the heating load decreased by 66% when the number of ventilation according to the occupancy schedule was applied.

Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation (BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석)

  • Lee, Minhyung;Lee, In-Bok;Ha, Tae-Hwan;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Park, Gwanyong;Kim, Jun-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.

High Power Factor Dual Half Bridge Series Resonant Inverter for an Induction Heating Appliance with Multiple Loads (다부하를 갖는 유도가열기기를 위한 고역률 이중 하프브릿지 직렬공진 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.307-314
    • /
    • 1998
  • A novel high power factor Dual Half Bridge Series Resonant Inverter (DHB-SRI) for an induction heating appliance with multiple loads is proposed to remove the interferential acoustic noise caused by the difference between operating frequencies of adjacent loads. The circuit enables independent full power range control of two induction heating elements by one inverter circuit and has minimum switching losses due to the zero voltage switching characteristic. According to the mode analysis, I will explain the operation of the proposed circuit. To evaluate the required cooling capacity, loss analysis is performed through deriving some loss equations. In order to obtain the power factor correction capability and to lessen the system size, suitable design guides are given. Using the designed values, the proto-type circuit with 2.8kW power consumption for each induction heating element is built and tested to verify the operation of the proposed circuit.

  • PDF

Building Energy Load Estimation by a Statistical Method (통계적 방법에 의한 건물 부하 산정)

  • Chung, Mo;Park, Hwa-Chun;Im, Yong-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.342-347
    • /
    • 2008
  • A Microsoft $Access^{(R)}$ application that estimates hourly building energy load is developed based on statistical field measurements. Hourly patterns of heating, hot water, cooling, and electricity loads are evaluated for an energy consuming community composed of various types of buildings. Popular building types such as apartments, offices, hotels and accomodations, stores, churches, schools and educational institutes are included in the model. For each type of buildings, hourly patterns for a month are measured and compiled to derive a 24-hour load distributions. Daily sum of heating, hot water, cooling, and electricity loads are also measured for the building types. The annual energy need profiles are generated by combining the 24-hour distribution and 365-day consumption patterns. The annual maximum values of the 8760 hours of a year for each load type serves as a guide for selecting a device capacity. A user-friendly interface that ushers users throughout the whole process is provided.

  • PDF