• Title/Summary/Keyword: Cooling analysis

Search Result 2,901, Processing Time 0.033 seconds

Numerical Analysis on Recirculation Generated by Obstacles around a Cooling Tower (냉각탑 주위의 장애물에 의한 재순환 현상에 관한 수치해석)

  • Lee Jung-Hee;Choi Young-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.578-586
    • /
    • 2006
  • The present study has been conducted to examine the effect of obstacles around a cooling tower and an air-guide to prevent recirculation. In order to analyze the interaction between external flow and cooling tower exit flow, the external region as well as the cooling, tower are included in computational domain. Two dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard ${\kappa}-{\varepsilon}$ turbulence model is used. To investigate the recirculation phenomena, flow and temperature fields are calculated with three approaches such as, the distance between cooling tower and obstacle, the allocated geometrical type, and the effect of height of obstacle. In addition, the air-guide is considered in the current computation. The mean recirculation rate increases with the height of obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

Solidification Simulation for Optimal Cooling of Bloom Type Continuous Casting Machine (Bloom 연주기의 최적 냉각조건 도출을 위한 응고 시뮬레이션)

  • Jung, Young-Jin;Kim, Young-Mo;Cho, Kee-Hyeon;Kang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1629-1636
    • /
    • 2004
  • The continuous casting is primarily a heat-extraction process in which the heat transfer at various cooling zones profoundly influences quality of products. So development of numerical model is necessarily needed for more specific and clear investigations upon heat transfer mechanism at mold and secondary cooling zones. In this study, heat transfer coefficients which show the characteristic of heat transfer mechanism in mold are calculated for more exact analysis with temperature measured in bloom mold using optimal algorithm, and finally the validity of cooling conditions at secondary cooling zone actually used at field fur 30 Ton bloom type continuous casting of 0.187%C is investigated. From the results of solidification analysis, the characteristic of bloom mold shows a similar tendency with that of previous studies, and optimized cooling conditions for 0.187%C are presented.

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Evaluation of Cooling System Suitability for Large Scale Antenna (대형 안테나 냉각시스템의 적합성 평가)

  • Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.60-66
    • /
    • 2021
  • The antenna transmits and receives signals has a number of electronics that generate heat. For cooling, four fans and airways circulate air inside the antenna-equipped housing to exchange heat from the cooling plate assembly. In this study, fluid analysis was conducted to assess the suitability of the cooling system. The electronic components of the antenna exhibited temperature values lower than the maximum operating temperature of the components, which showed that the cooling system for the antenna had sufficient performance.

Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness (이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향)

  • Choi, Dae-Woong;Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

A Study on the Cooling Characteristics of Helical Type Cooling-Jacket according to the Flow Rate (나선형 냉각 자켓의 유량에 따른 냉각 특성)

  • 김태원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.231-235
    • /
    • 1999
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. for the analysis, three dimensional model for the cooling jacket is built by using finite volume method. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficients on the boundary. The temperature distributions and the cooling characteristics are analyzed by using the commercial software FLUENT. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket. Cooling performance of cooling jacket is good in condition that stream-wise cross section's horizontal length is close to its vertical one and flow rate is high. This results show that heat transfer is dominated by velocity profile and heat transfer area.

  • PDF

A study on the cooling analysis of plastic products with high aspect ratio (고형상비를 갖는 플라스틱제품의 냉각해석에 관한 연구)

  • Hwang, Si-Hyun;Seo, Gi-Yeong;Kim, Chul-Kyu;Kim, Meong-Gi;Ji, Seong-Dae;Jung, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2008
  • Injection molding is representative process of plastic production. Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the various conditions. In this study, moldflow software was used to analyze the cooling analysis. The results of cooling analysis and testing catapult were compared for plastic products.

  • PDF

Economic Analysis of Cooling-Heating System Using Ground Source Heat in Horticultural Greenhouse (시설원예의 지열냉·난방시스템 경제성 분석)

  • Ryoo, Yeon-Su;Joo, Hye-Jin;Kim, Jin-Wook;Park, Mi-Lan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.60-67
    • /
    • 2012
  • Government Geothermal Cooling-Heating Projects has made efforts to reduce GHG(Greenhouse Gas) emissions and to manage cost of greenhouse farm households. This study evaluated the economic benefits of heating load rate of change by comparing Geothermal Cooling-Heating System with the existing system(greenhouse diesel heating) in the Government Geothermal Cooling-Heating Projects. Economic analysis results shows that, 1) When installing the Cooling-Heating system according to the ratio of 70% heating load in policy standards, the geothermal cooling-heating system has economic efficiency with greenhouse type or scale independent because the investment cost is recovered within 7 years. And It was more economic efficiency the ratio of 50% heating load than70% heating load. 2) When installing the Cooling-Heating system according to the glass greenhouse of the ratio of 90% heating load, pay period of investment cost is recovered within 5 years. Therefore it is necessary to apply flexible heating sharing according to greenhouse type or scale.

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Design Improvement for the Cooling System of the Interim Spent Fuel Storage Facility Using a PSA Method

  • Ko, Won-Il;Park, Jong-Won;Park, Seong-Won;Lee, Jae-Sol;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.440-451
    • /
    • 1996
  • With emphasis on safety, this study addresses for better design condition for the cooling system in a wet-type interim spent fuel storage facility, using a probabilistic safety assessment method. To incorporate the design renovation into the design phase, a simple approach is proposed. By taking the cooling system of a reference design, a fault tree analysis was performed to identify the weak point of the considered system, and then basic factors for design renovation were defined. A total of 21 design alternatives were selected through the combination of the basic factors. Finally, the optimum design alternative for the cooling system is derived by means of the cost and effect analysis based on the estimated cost, system reliability and assumed probabilistic safety criteria. With the assumption that the failure frequency of at-reactor spent fuel cooling system compiles with probabilistic safety criteria for the interim spent fuel cooling system, it was shown that the optimum alternative should have l00% cooling loop redundancy with one pump per cooling loop and a cleanup system installed separately from the main loop. Furthermore, it also should be classified into safety system. The result of this study can be used as a useful basis to identify factors of safety concern and to establish design requirements in the future. The method also can be applied for other nuclear facilities.

  • PDF