• Title/Summary/Keyword: Cooling Tower System

Search Result 94, Processing Time 0.024 seconds

Numerical Investigation of Effects of Tip Clearance Height on Fan Performance and Tip Clearance Flow in an Axial Fan of the Cooling Tower (냉각탑용 축류팬의 팁 간격이 팬 성능 및 틈새 유동에 미치는 영향에 관한 수치해석적 연구)

  • Oh, Keon-Je
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • 팁 간격의 크기가 냉각탑용 축류팬의 성능과 누설 유동에 미치는 영향을 조사하기 위해서 서로 다른 2가지 팁 간격을 가진 경우에 대해서 점성유동을 해석하였다. 케이싱 내에서 작동하는 축류팬 주위의 유동을 연속방정식, Navier-Stokes 방정식 등을 지배방정식으로 사용하여 수치해석 하였다. 난류유동에 나타나는 레이놀즈 응력은 ${\kappa}-{\epsilon}$ 난류모델을 사용하여 계산하였다. 전체적으로 H형 격자계를 사용하였으며, 팁 주위의 유동을 해석하기 위해서 팁 영역 주위에 부분적으로 조밀한 격자를 두었다. 팁 간격이 증가하면 누설 유동의 증가로 인한 유동 손실의 증가로 전압상승과 수력효율이 감소하였다. 팬 직경에 대한 팁 간격이 0.4%에서 1.0%로 증가하면 전압상승 값이 약 10% 정도 감소하였으며, 수력효율은 약 3% 정도 감소하였다. 팁 간격이 팁 근처 날개 주위의 압력에 미치는 영향을 보면, 팁 간격이 증가하여 누설 유동이 증가하면 흡입면과 압력면의 압력차가 전연 부근에서 감소함을 알 수 있었다. 누설 와류의 중심은 코드를 따라서 흡입면으로 부터 떨어져 나가면서 형성됨을 알 수 있었다. 누설 와류의 위치를 보면 팁 간격이 증가하면 와류 중심의 위치가 흡입면 쪽으로 이동하고, 흡입면에서 떨어진 거리도 날개 후반부에서 증가 폭이 커지는 포물선 형태로 증가함을 알 수 있었다.

Development of a Low-cost Automatic Water Quality Diagnosis System for Cooling Towers (저가형 냉각탑 자동 수질 진단 시스템 개발)

  • Kim, Jung Hwan;Park, Han-Bin;Kang, Taesam;Park, Jungkeun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • We developed a low-cost automatic diagnosis system for water quality in cooling towers to measure the concentrations of key ingredients such as $Ca^{2+}$, $Cl^-$, $PO{_4}^{3-}$, and $Fe^{2+}$. $Ca^{2+}$, and $Cl^-$ are the main factors that cause the generation of scale, corrosion, and sludge in water pipes. $PO{_4}^{3-}$ prevents corrosion, sludge and scale by inhibiting the ions (i.e., $Ca^{2+}$, $Cl^-$) from sticking to the pipes. $Fe^{2+}$ is an indicator of pipe corrosion. The proposed system consists of a microprocessor, a specimen container and heater, a precision pump, relays and valves, LED optical sources, and photo detectors. It automatically collects water samples and carries out pretreatment for determining the concentration of each chemical, and then estimates the concentration of each ion using low-cost LED optical sources and detectors. Experimental results showed that the accuracy of the proposed system is sufficiently high for water quality diagnosis and management of cooling towers, demonstrating the possibility of the proposed system's wide usage in real environments.

A Precision Measuring System using Laser Sensor for Axial Fans of Cooling Towers (레이저 센서를 이용한 냉각탑용 축류팬 형상 정밀도 측정 시스템)

  • 이광일;강재관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.925-928
    • /
    • 2003
  • In this paper, a precision measuring machine for large sized axial fans of cooling towers are developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. 3-dimensional measuring data are compared to the design data to compute the distortion of the axial fans. Two distortions such as the axis of the fan and the airfoils along the axis are introduced to define the shape precision of axial fans. Genetic algorithm is used to solve the optimization problem during computing the distortion. Results of distortion are displayed 3 dimensionally in a solid-modeler as well as 2-D drawings to help users find it with case.

  • PDF

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

Optimal Design and Die Manufacturing of an Axial Fan for Cooling Towers (냉각탑용 축류팬 설계 및 금형제작의 자동화)

  • Kang, Jae-Gwan;Lee, Hak-Sun;Oh, Kun-Je;Jung, Jong-Youn
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.717-724
    • /
    • 2000
  • In this paper, an integrated system of optimal design, performance evaluation, and die design and manufacturing of axial fans for cooling tower is presented. The design and performance evaluation are developed based on three dimensional flow analysis so as to ensure low noise and high efficiency. The methodologies are implemented on computer as a GUI system including 3-D surface modeling and 2-D drawing file output modules. The CAD/CAM system is engaged to design the die and generate NC tool path, but the processes are also automated and integrated into the system by means of a part program coded from the design data. It is shown that the newly developed fans have superior performance and shortened lead-time compared to the existing dead-copied fans.

  • PDF

Applied cases of advanced construction & engineering technology at Tower Palace III Project (타워팰리스 III 현장의 첨단 시공 및 엔지니어링 기술 적용사례)

  • Wang In-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.202-213
    • /
    • 2003
  • Tower Palace III project is the highest residential and commercial high-rise complex building in Korea. In order to construct a high-rise building, advanced construction and engineering technology is required. Therefore, with more developed construction and engineering technology based upon accumulated knowledge, construction speed of 13.4 days per floor including finish work was achieved in this project. To achieve this project successfully, three main advanced construction technology were applied: 1) Construction methods for 3-day cycle of structural work and curtain wall, 2) Tact scheduling method for finish work, 3) Management system of material, labor, work, and information. Also, four main engineering technology were applied: 1) New material such as high -flowing concrete and high strength concrete of 800 kgf/cm2, 2) New method such as a pipe-cooling system of a cool water circulating type, 3) Mechanical system such as smart-fan controlling kitchen-ventilation system, 4) Electrical system such as false car system.

  • PDF

Performance Comparison of Heat Transfer Plates for Cooling Tower Air Heater Through Numerical Analysis (냉각탑 공기가열기용 전열판의 수치해석적 성능 비교)

  • Lee, Eul-Jong;Kim, Jung-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5676-5683
    • /
    • 2012
  • In this study, numerical analysis was performed on three shapes of heat transfer plates (chevron, wave and dimple type), which are currently used as fillers of cooling towers. Results show that heat transfer rates per consumed power were larger for enhanced plates as compared with that of plain plate. Highest heat transfer coefficient was obtained for wave shape followed by chevron and dimple shape. For wave shape, cross corrugations induced significant mixing of fluids, which enhanced the heat transfer. Friction factor yielded a similar trend with the heat transfer coefficient. However, heat transfer rate and pressure drop per sheet was the largest for chevron shape, due to the largest heat transfer area per sheet.

An Automated Design and 3-D Modeling System of Axial Fans and a Boss (냉각탑용 축류팬 및 보스 설계를 위한 3차원 자동 모델링)

  • 강재관;이광일;김원일;이윤경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 2003
  • In this paper, an automated design and 3-D modeling system of an axial fan and a boss for cooling towers was developed. API and parametric design Provided by a commercial solid-modeler are engaged to automate modeling process. Design data of the boss are assumed to be given by a user with design experiences while the fan from the fan design program using three-dimensional flow analysis. An algorithm avoiding the interferences between fans and a boss is developed. The design data are registered on the database not only to remove duplicate design but also to transfer the data to ERP system.

The Characteristics of Cooling Performance on 7RT Ammonia Absorption System (7RT급 암모니아 흡수식 냉온수기의 냉방성능 특성)

  • Lee, Ho-Saeng;Jin, Byoung-Ju;Yoon, Jung-In;Hwang, Jun-Hyeon;Jin, Slm-Won;Kyung, Ick-Soo;Erickson, Donald C
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.433-438
    • /
    • 2009
  • Experimental results for performance characteristics of small $NH_3$ absorption chiller/ heater are presented. The apparatus consists of 7RT water-cooled absorption system, solution pump, boiler, cooling tower and peripheral devices. The effect of experimental parameters, such as refrigerant mass flow rate, solution mass flow rate and cooling water temperature have been investigated in view of the system performance. The capacity of each heat exchanger increased as refrigerant mass flow rate increased in cooling mode. Also, a cooling capacity increased as a strong solution mass flow rate increased. The cooling and heating COP show 0.5, 1.5 regardless of refrigerant mass flow rate, respectively. The results focus on the evaluation for performance characteristics of system with respect to variation of refrigerant mass flow rate under standard design conditions.

An Experimental study on heat transfer of a falling liquid film in air channel flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF