• Title/Summary/Keyword: Cooling Structure

Search Result 864, Processing Time 0.028 seconds

Spot marking of the multilayer thin films by Nd:YAG laser (Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹)

  • Kim, Hyun-Jin;Shin, Yong-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.361-368
    • /
    • 2004
  • We separated the multilayer structure of CD-R(compact disk-recordable) and investigated optimal spot marking conditions and physical and chemical transitions in response to various laser beam energh levels. Spot marking(80 ${\mu}{\textrm}{m}$ spot size) was produced on the surface of each layer using a Q-switched Nd:YAG laser between 27 mJ and 373mJ. By investigating resulting pit formation with Optical Microscopy(OM) and Optical Coherence Tomography(OCT), we analyzed the formation process of spot marking in the multilayer structure of different chemical composition. The localized heating of the substrate in the multilayer thin film caused the short temporal thermal expansion, and absorbed optical energy between reflective and dye interfaces melted dye and increased the volume. During the cooling phase, formation of pit and surrounding rim can be explained by three distinct processes; effect of surface tension, evaporation by spontaneous temperature increase due to laser energy, and mass flow from the recoil pressure. Our results shows that the spot marking formation process in the multilayer thin film is closely related to the layers' physical, chemical, and optical properties, such as surface tension, melt viscosity, layer thickness, and chemical composition.

A Study on Crystallographic and Mossbauer Spectroscopic Properties of Magnetic Oxide (산화물 자성체의 결정학적 및 뫼스바우어 분광학적 특성 연구)

  • Park, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.701-706
    • /
    • 1999
  • The crystal structure and magnetic properties of magnetic oxide system (F $e_2$ $O_3$)$_{5}$(A $l_2$ $O_3$)$_{4-x}$(G $a_2$ $O_3$)$_{x}$)SiO has been studied using X-ray diffraction and Mossbauer spectroscopy The changes of magnetic structure by the Ga ion substitution and the temperature variation have been investigated using Mossbauer spectroscopy, and the results are compared with those of the SQUIB measurements. Results of X-ray diffraction indicated that the crystal structures of the system change from a cubic spinel type to an orthorhombic via the intermediate region. This magnetic oxide system seems to be new kind of spinel type ferrites containing high concentration of cation vacancies. Various and complicated Mossbauer spectra were observed in the samples (x>0.2) at temperatures lower than room temperature. This result could be explained by freezing of the superparamagnetic dusters. On cooling and substitution, magnetic states of the system show various and multicritical properties. Unexpected dip in magnetization curves below 50K was observed in SQUID measurements. It was interpreted as an effect of spin canting including spin freezing or collective spin behavior.ior.r.

  • PDF

Crack and Time Effect on Chloride Diffusion Coefficient in Nuclear Power Plant Concrete with 1 Year Curing Period (1년 양생된 고강도 원전 콘크리트의 염화물 확산에 대한 균열 및 시간효과)

  • Chun, Ju-Hyun;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Concrete structure for nuclear power plant is mass concrete structure with large wall depth and easily permits cracking in early age due to hydration heat and drying shrinkage. It always needs cooling water so that usually located near to sea shore. The crack on concrete surface permits rapid chloride intrusion and also causes more rapid corrosion in the steel. In the study, the effect of age and crack width on chloride diffusion is evaluated for the concrete for nuclear power plant with 6000 psi strength. For the work, various crack widths with 0.0~1.4 mm are induced and accelerated diffusion test is performed for concrete with 56 days, 180days, and 365 days. With increasing crack width over 1.0mm, diffusion coefficient is enlarged to 2.7~3.1 times and significant reduction of diffusion is evaluated due to age effect. Furthermore, apparent diffusion coefficient and surface chloride content are evaluated for the concrete with various crack width exposed to atmospheric zone with salt spraying at the age of 180 days. The results are also analyzed with those from accelerated diffusion test.

Analysis and Development of Experimental Method of Charle's Law Applicable to School (학교 현장에 적용 가능한 '샤를의 법칙' 실험방법의 분석 및 개발)

  • Min, Jung-Sook;Kim, Sung-Hee;Jeong, Dae-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • In this study, we developed an experimental method of the Charles' law applicable to school. Science textbooks and literatures on this principle were analyzed to extract factors utilized in organizing the experimental setup and method. A combined structure such as with a vial and a glass tube, the former of which is for deciding the total volume and the latter of which is for easy measurement of volume, was better in measurement of volume with temperature rather than a simple structure such as syringe. Use of graduated cylinder as a water bath to control the temperature showed advantage in cooling time than using other bath of larger volume such as a beaker. A liquid drop was used as a plug in the glass tube. This plug has little resistance with the glass wall when the gas volume changes. Water as a liquid drop in the glass tube had a significant effect in volume change of gas due to evaporation, especially in the beginning of the measurement. Glycerol showing negligible effect in volume change was used. This method took about one hour and produced a good linear relationship between the temperature and volume of gas with $R^2$ = 0.999 and absolute zero temperature = $-216.7\;{^{\circ}C}$. The Charles' law experiment developed in this study can be performed with appropriate adjustment of procedure considering the purpose of the curriculum of science and chemistry subject at each school level.

Temporal and Spatial Variations of Temperature and Salinity around Ganjeol Point in the Southeast Coast of Korea (한국 남동해 간절곶 주변해역의 열염구조와 시공간적 변동 특성)

  • Choo, Hyo-Sang;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.474-485
    • /
    • 2014
  • Temporal and spatial variations of temperature and salinity around Ganjeol Point during January, April, August and November 2011 were studied using the data from CTD observations and temperature monitoring buoys deployed at 20 stations in the southeast coast of Korea. Temperature and salinity were nearly homogeneous through the whole depth by mixing of the seawater in spring and winter related to the sea surface cooling. Stratification induced by the river runoff and the bottom cold water was clear in summer. In autumn, sea water had vertical mixing initiated from surface layer and weak stratification at the middle and bottom layers. Low temperature and high salinity emerged throughout the year near Ganjeol Point, which inferred from turbulent mixing and upwelling by its topographical effect. Major periods of 1/4~1.4 day temperature fluctuations were recorded for the most part of the stations. According to the cross spectral density analysis, high coherence and small time lag for temperature fluctuation between layers were shown at Ganjeol Point. However, those features at the northen area of Hoeya river were opposed to Ganjeol Point. From analyses, thermohaline structure and its fluctuation around Ganjeol Point were characterized into those three parts, the south of Ganjeol Point, Ganjeol Point and the north of Ganjeol Point.

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

Kr Atoms and Their Chlustering in Zeolite A

  • Im, U Taek;Jang, Jang Hwan;Jeong, Gi Jin;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1023-1029
    • /
    • 2001
  • The positions of Kr atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated zeolite A of unit-cell composition Cs3Na8HSi12Al12O48 (Cs3-A) have been determined. Cs3-A was exposed to 1025 atm of krypton gas at 400 $^{\circ}C$ for four days, followed by cooling at pressure to encapsulate Kr atoms. The resulting crystal structure of Cs3-A(6Kr) (a = $12.247(2)\AA$, R1 = 0.078, and R2 = 0.085) has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C$ and 1 atm. In the crystal structure of Cs3-A(6Kr), six Kr atoms per unit cell are distributed over three crystallographically distinct positions: each unit cell contains one Kr atom at Kr(1) on a threefold axis in the sodalite unit, three at Kr(2) opposite four-rings in the large cavity, and two at Kr(3) on threefold axes in the large cavity. Relatively strong interactions of Kr atoms at Kr(1) and Kr(3) with Na+ ions of six-rings are observed: Na-Kr(1) = 3.6(1) $\AA$ and Na-Kr(3) = $3.08(5)\AA.$ In each sodalite unit, one Kr atom at Kr(1) was displaced $0.74\AA$ from the center of the sodalite unit toward a Na+ ion, where it can be polarized by the electrostatic field of the zeolite, avoiding the center of the sodalite unit which by symmetry has no electrostatic field. In each large cavity, five Kr atoms were found, forming a trigonal-bipyramid arrangement with three Kr(2) atoms at equatorial positions and two Kr(3) atoms at axial positions. With various reasonable distances and angles, the existence of Kr5 cluster was proposed (Kr(2)-Kr(3) = $4.78(6)\AA$ and Kr(2)-Kr(2) = $5.94(7)\AA$, Kr(2)-Kr(3)-Kr(2) = 76.9(3), Kr(3)-Kr(2)-Kr(3) = 88(1), and Kr(2)-Kr(2)-Kr(2) = $60^{\circ}).$ These arrangements of the encapsulated Kr atoms in the large cavity are stabilized by alternating dipoles induced on Kr(2) by four-ring oxygens and Kr(3) by six-ring Na+ ions, respectively.

Structural analysis of Precipitates in a Nickel based Cast Single Crystal of CMSX 6 (니켈계 초합금 CMSX 6 단결정 주조조직의 석출물구조 분석)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Kim, Su-Cheol;Im, Ok-Dong;Kim, Seung-Ho;Jin, Yeong-Hun;Choe, Jong-Su;Lee, Jae-Hun;Lee, Sang-Jun;Seo, Dong-Lee;Lee, Tae-Hun;Heo, Mu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1165-1169
    • /
    • 1998
  • A single crystal cast blade was manufactured by CMSX 6, one of the first generarion nickel based single crystal superalloys by the selector method in a vacuum furnace. The single crystal has been grown with cooling rate of 2.5 mm/min, after pouring the molten alloy of 163$0^{\circ}C$ to the mold heated to 150$0^{\circ}C$. The cast structure could be classified into matrix (dendrite) and eutectic regions in ${\gamma}$'shape and size. The eutectic region showed higher Ti content. As the additional results of ${\gamma}$'precipitates by EPMA and CBED analysis the ${\gamma}$'size was less than 0.5~0.7$\mu\textrm{m}$, showing the chemical composition close to Ni$_3$Al of Ll$_2$ lattice structure. But ${\gamma}$'size has increased to bigger than 1.0$\mu\textrm{m}$, being near to eutectic region, changing its shape to bar or huge block types. These showed the chemical structure near to Ni$_3$Ti of D $O_{24}$ lattice structure. Therefore, ${\gamma}$'morphology of dendrite and eutectic regions depends absolutely on its chemical composition and lattice structure.

  • PDF

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.