• Title/Summary/Keyword: Cooling Loads

Search Result 282, Processing Time 0.02 seconds

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Development the Technique for Fabrication of the Thermal Fatigue Crack to Enhance the Reliability of Structural Component in NPPs (원자력 구조재 신뢰성 향상을 위한 열피로 균열 시험편 제작 기법 개발)

  • Kim, Yong;Kim, Jae-Sung;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.43-49
    • /
    • 2008
  • Fatigue cracks due to thermal stratification or corrosion in pipelines of nuclear power plants can cause serious problems on reactor cooling system. Therefore, the development of an integrated technology including fabrication of standard specimens and their practical usage is needed to enhance the reliability of nondestructive testing. The test material was austenitic STS 304, which is used as pipelines in the Reactor Coolant System of a nuclear power plants. The best condition for fabrication of thermal fatigue cracks at the notch plate was selected using the thermal stress analysis of ANSYS. The specimen was installed from the tensile tester and underwent continuos tension loads of 51,000N. Then, after the specimen was heated to $450^{\circ}C$ for 1 minute using HF induction heater, it was cooled to $20^{\circ}C$ in 1 minute using a mixture of dry ice and water. The initial crack was generated at 17,000 cycles, 560 hours later (1cycle/2min.) and the depth of the thermal fatigue crack reached about 40% of the thickness of the specimen at 22,000 cycles. As a results of optical microscope and SEM analysis, it is confirmed that fabricated thermal fatigue cracks have the same characteristics as real fatigue cracks in nuclear power plants. The crack shape and size were identified.

Study on the Relationship between Indoor $CO_2$ Concentration and Local Mean Air-age in the Lecture Room with System Air-conditioner and Ventilation Unit for Cooling Loads (냉방시 시스템에어컨과 환기유닛 적응 강의실에서 실내 $CO_2$ 농도와 국소평균공기연령 연구)

  • Jang Jae-Soo;Noh Kwang-Chul;Oh Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.736-745
    • /
    • 2005
  • This study is undertaken to evaluate the relationship between the indoor $CO_2$ concentration and the local mean air-age in the lecture room with the occupants. We conducted the experiments to examine the indoor $CO_2$ concentration and the local mean air-age with respect to the supply airflow of the ventilation system and the discharge angle and air-flow of the system air conditioner. Through the experiments, we found out that indoor $CO_2$ concentrations calculated by the prediction equation of Seidel are about 350 ppm lower than those measured by the experiments. The indoor $CO_2$ concentration is not related with the air-flow and the discharge angle of the system air-conditioner, but with the ventilation airflow. From the numerical calculation, the indoor $CO_2$ concentration is not related with the ventilation effectiveness, but strongly with the local mean air-age. In case of our model, the indoor $CO_2$ concentration is likely to fall within the acceptable air quality when the local mean air-age is averagely predicted under 400 seconds.

Optimal design of binary current leads cooled by cryogenic refrigerator (극저온 냉동기로 냉각되는 이중전류도입선의 최적설계)

  • Song, S.J.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

Estimation of Adequate Capacity of Ground Source Heat Pump in Energy-saving Pig Farms Using Building Energy Simulation (BES를 사용한 에너지 절감형 양돈장의 지열히트펌프 적정 용량 산정)

  • Lee, Seong-Won;Oh, Byung-Wook;Park, Kwang-Woo;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • In Korea, attention is being paid to the use of renewable energy in the livestock industry, and Ground Source Heat Pump (GSHP), which is advantageous for temperature control, is considered as one of the ways to reduce the use of fossil fuels. But GSHP is expensive to install, which proper capacity calculation is required. GSHP capacity is related to its maximum energy load. Energy loads are affected by climate characteristics and time, so dynamic analysis is required. In this study, the optimal capacity of GSHP was calculated by calculating the heating and cooling load of pig farms using BES (Building Energy Simulation) and economic analysis was performed. After designing the inside of the pig house using TRNSYS, one of the commercial programs of the BES technique, the energy load was calculated based on meteorological data. Through the calculated energy load, three heating devices and GSHP used in pig farms were analyzed for economic feasibility. As a result, GSHP's total cost of ownership was the cheapest, but the installation cost was the highest. In order to reduce the initial cost of GSHP, the capacity of GSHP was divided, and a scenario was created in which some of it was used as an auxiliary heating device, and economic analysis was conducted. In this study, a method to calculate the proper capacity of GSHP through dynamic energy analysis was proposed, and it can be used as data necessary to expand the spread of GSHP.

Operatonal characteristics of the PLS linac vacuum system (PLS 선형가속기 진공계의 운전특성)

  • 김임경;박용정;김경렬;남궁원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.269-277
    • /
    • 1996
  • The vacuum systems of PLS linac provides average pressure of $2.6\times 10^{-6}$Pa under high power microwave of 54 MW peak with 4.1 $\mu \textrm s$ pulse width and 10 Hz repetition rates. The base pressure of system is$2.4\times 10^{-6}$Pa with 45$^{\circ}C$ cooling water. The outgassing rate of the system is decreased from $3.0\times 10^{-11}Torr-l/sec-\textrm{cm}^2$ at the initial stage after installation to $1\times 10^{-12}Torr-l/sec-\textrm{cm}^2$ at present. Total accumulated microwave energy dose is about 140 GJ per module. All ion pumps are working under saturated regime and effective pumping speeds of 60 I/s, 230 I/s ion pumps are 45 I/s, 65 I/s, 140 I/s under the operating range. Main problems occurred in recent year are troubles of ion pump controller and vacuum gauge controller, vacuum leak of energy doubler window and electron gun ceramic, and water leak in the dummy load of acceleraing columns. Total of 41 troubles with 140. 8 hours down time give good system availability of 98%. Down time can be reduced by high power waveguide valves and water dummy loads under development, and then availability is expected to be increased up to 99.5%.

  • PDF

Geochemistry of Cu-Pb-Zn-Ag Deposits from the Euiseong Mineralized Area (의성 광화대 동-연-아연-은 광상의 지화학적 연구)

  • Chi, Se-Jung;Doh, Seong-Jae;Choi, Seon-Gyu;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.253-266
    • /
    • 1989
  • The Cu-Pb-Zn-Ag hydrothermal vein type deposits which comprise the Dongil and Dong-cheogogsan mines occur within the Cretaceous sedimentary rocks in the Euiseong Basin of the southern Korean peninsula. The ore mineralization is contained within three stage(I,II and III) quartz and calcite veins. Ore minerals occur as dominant chalcopyrite, galena, sphalerite, tetrahedrite and Pb, Ag, Sb and Bi-bearing sulfosalts. Stage I ore minerals were deposited between $400^{\circ}C$ and $200^{\circ}C$ from the fluid with moderate salinities(7.0 to 4.5 eq. wt. % NaCl). Evidence of boiling suggests pressure of less than 150 bars during stage I mineralization. This pressure corresponds to maximum depths of 650 m and 1700 m, respectively, assuming lithostatic and hydrostatic loads. The data on mineralogy, temperature and salinity, together with information on the solubility of Cu complex, suggest that Cu deposition is a result of boiling coupled with declining temperature from $350^{\circ}$ to $250^{\circ}C$ or declining log $a_{o_2}$(from -29.8 to -35.9 atm.)and increasing in pH. Pb, Ag, Sb and Bi-bearing sulfosalts were deposited by cooling and dilution at temperature of less than $250^{\circ}C$ from the ore fluid with less than -35.9 atm. of log $a_{o_2}$.

  • PDF

A Study on the Calculation Method of Load standard for ZEB activation (ZEB 활성화를 위한 부하기준 산정 방법 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.92-99
    • /
    • 2017
  • In Korea, the zero energy building was designated as the 7 new industries in the Ministry of Land and the 8 new industries in the Ministry of Industry. In order to maximize the insulation performance of the building envelope, improve the efficiency of building equipment, We are aiming. It is necessary to analyze the energy requirements of the buildings (cooling, heating, hot water supply, lighting, ventilation) of buildings with energy efficiency level of 1++ which is equivalent to the zero energy building certification system in Korea, It is aimed to be used as basic data for the advancement of energy building certification system. Zero Energy Building certification is estimated to be 61 buildings by 2017, and the approximate reference value and the first energy requirement for each of the five loads are calculated considering passive and active aspects. It is difficult to say that it is a clear standard because there is a small sample of data for calculating the load standard. However, it is necessary to interpret various methods in order to upgrade the Zero Energy Building certification standard in the future.

Geochemical Studies of Hydrothermal Gold Deposits, Republic of Korea : Yangpyeong-Weonju Area (한반도 열수 금광상의 지화학적 연구 : 양평-원주지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Lee, Kyeong-Yong;Shelton, Kevin L.
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 1989
  • Electrum-galena-sphalerite mineralization of the Yangpyeong-Weonju Au-Ag area was deposited in three stages of quartz and calcite veins which fill fault breccia zones. Fluid inclusion and stable isotope data show that ore mineralization was deposited at temperatures between $260^{\circ}C$ and $180^{\circ}C$ from fluids with salinities between 8.9 and 2.9 equivalent weight percent NaCl. Evidence of boiling indicates pressures of <50 bars, corresponding to depths of 220 to 550 m, respectively, assuming lithostatic and hydrostatic loads. Au-Ag deposition was likely a result of bolling coupled with cooling. Within stages I and II there is an apparent increase in ${\delta}^{34}S$ values of $H_2S$ with paragenetic time ; early -1.4~2.7‰ to later 6.6-9.2‰. The progressively heavier $H_2S$ values can be generated through isotopic re-equilibration in the ore fluid following removal of $H_2S$ by boiling or precipitation of sulfides. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Comparison of these values with those of other Korean Au-Ag deposits reveals a relationship between depth and degree of water-rock interaction. All investigated Korean Jurassic and Cretaceous gold-silver-bearing deposits have fluids which are dominantly evolved, meteoric water, but on1y deeper systems (${\geq}1.25km$) are exclusively gold-rich.

  • PDF

A Study for the Methodology of Analyzing the Operation Behavior of Thermal Energy Grids with Connecting Operation (열 에너지 그리드 연계운전의 운전 거동 특성 분석을 위한 방법론에 관한 연구)

  • Im, Yong Hoon;Lee, Jae Yong;Chung, Mo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • A simulation methodology and corresponding program based on it is to be discussed for analyzing the effects of the networking operation of existing DHC system in connection with CHP system on-site. The practical simulation for arbitrary areas with various building compositions is carried out for the analysis of operational features in both systems, and the various aspects of thermal energy grids with connecting operation are highlighted through the detailed assessment of predicted results. The intrinsic operational features of CHP prime movers, gas engine, gas turbine etc., are effectively implemented by realizing the performance data, i.e. actual operation efficiency in the full and part loads range. For the sake of simplicity, a simple mathematical correlation model is proposed for simulating various aspects of change effectively on the existing DHC system side due to the connecting operation, instead of performing cycle simulations separately. The empirical correlations are developed using the hourly based annual operation data for a branch of the Korean District Heating Corporation (KDHC) and are implicit in relation between main operation parameters such as fuel consumption by use, heat and power production. In the simulation, a variety of system configurations are able to be considered according to any combination of the probable CHP prime-movers, absorption or turbo type cooling chillers of every kind and capacity. From the analysis of the thermal network operation simulations, it is found that the newly proposed methodology of mathematical correlation for modelling of the existing DHC system functions effectively in reflecting the operational variations due to thermal energy grids with connecting operation. The effects of intrinsic features of CHP prime-movers, e.g. the different ratio of heat and power production, various combinations of different types of chillers (i.e. absorption and turbo types) on the overall system operation are discussed in detail with the consideration of operation schemes and corresponding simulation algorithms.