• Title/Summary/Keyword: Cooling Load Reduction

Search Result 106, Processing Time 0.023 seconds

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

Statistical Analysis on Application of External Solar Shading Devices (외부 차양장치의 적용실태에 관한 통계적 분석)

  • Kim, Hyo-Jung;Lee, Chul-Sung;Yoon, Jong-Ho
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.65-71
    • /
    • 2016
  • Purpose : The solar shading device carries out roles in a reduction of the cooling load and an improvement of the thermal comfort of occupants by adjusting incident solar radiation. In addition, The shading device enhances the visual sensation comfort by controlling the optical properties. In order to improve building performance and comfort of occupancy, interests in application of the shading devices are getting increasing. This study investigated the application and effectiveness of the external shading device design using statistical analysis. The outcome of this paper could be utilized for the realization of status quo and for an estimation of effectiveness of the shading device Method : The period of data gathering was between 2003 and 2014 and total 459 cases of practical building project were investigated. Firstly, this study defined qualification of the shading devices; the shading device should have minimum protruding lengths of 150mm to outside and have the function of shading control. This paper investigated application rate of the shading device in real project, regional rate of application, annual change of application, materials and types. Result : The statistical analysis showed that the application rate of shading devices was 25.7% in total 459 building design projects. The application rate in central and southern region was 25.3% and 27.0% respectively. Meanwhile, Jeju region showed 22.2%, which was the lowest rate although this area needs more shading devices. The application number of the shading device was the smallest in 2007, but the rate gradually increased after that. The applications was the largest in 2014 due to growing interest of the shading devices in the building.

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.

An Experimental Study on the Reduction Effects of Shading Devices on Sky Radiant Cooling in Winter (차양장치의 겨울철 천공복사 냉각 저감 효과에 관한 실험적 연구)

  • Kim, Jin-Hee;Kim, Young-Tag;Lee, Soo-Yeol;Choi, Won-Ki
    • Land and Housing Review
    • /
    • v.12 no.1
    • /
    • pp.129-137
    • /
    • 2021
  • External shading devices are well known solar control devices that can help reduce the cooling load of commercial buildings. For this study, experiments were conducted to examine the feasibility of shading devices in reducing both the cooling and heating loads. The influence of sky radiant cooling during winter was verified for the external shading device, internal roller blind, and window. Results can be summarized as follows. The temperature difference between the inner and outer surfaces of the window with the external shading device was 11.8℃ compared to 14.6℃ for one without the external shading device. This 2.8℃ difference was due to heat exchange by sky radiation when the surface temperature of the shading device was lower than the ambient outdoor air temperature. The roller blind resulted in a lower temperature of 0.8℃ compared to the average temperature of the window's air cavity. This was due to heat exchange by sky radiation of the roller blind surfaces. Without shading devices, the outside surface temperature of the window is about 3℃ higher. The study also found that when external shading devices were installed on both the southwest and southeast sides, the outside surface temperature of the windows were lower on the southwest side than the southeast side.

Analysis of Building Energy Reduction Effect based on the Green Wall Planting Foundation Type Using a Simulation Program (건물일체형 패널형 벽면녹화 식재기반 유형별 건물에너지 성능 분석)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.936-946
    • /
    • 2015
  • This study is aimed to analyze the reduction performance of building energy consumption according to planting base types of panel-type green walls which can be applied to existing buildings. The performance was compared to the general performance of green walls that have demonstrated effects of improving the thermal environment and reducing building energy consumption in urban areas. The number of planting base types was 4 in total, and simulations were conducted to analyze the thermal conductivity, thermal transmittance, and overall building energy consumption rate of each planting base type. The highest thermal conductivity by the planting base type was Case C (0.053W/mK), followed by Case B (0.1W/mK) and Case D (0.17W/mK). According to the results of energy simulation, the most significant reduction of cooling peak load per unit area was Case C (1.19%), followed by Case B (1.14%) and Case D (1.01%) when compared to Case A to which green wall was not applied; and the most significant reduction of heating peak load per unit area was estimated to be Case C (2.38%), followed by Case B (1.82%) and case D (1.50%) when compared to Case A. The amount of yearly cooling and heating energy use per unit area showed 3.04~3.22% of reduction rate. The amount of the 1st energy use showed 5,844 kWh/yr of decrease on average for other types when compared to Case A. The amount of yearly $CO_2$ emission showed 996kg of decrease on average when compared to Case A to which the green wall was not applied. According to the results of energy performance evaluation by planting location, the most efficient energy performance was eastward followed by westward, southward and northward. According to the results of energy performance evaluation by planting location by green wall ratio, it was found that as the ratio of green wall increased, the energy performance displayed better results, showing approx. double reduction rate in energy consumption at 100% of green wall ratio than the reduction rate at 20% to 80% of green wall ratio.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

A Study on Economic Analysis and Performance Appraisal of Compact Type Variable Air Volume (컴팩트형 VAV 공조기의 성능평가와 경제성 분석에 관한 연구)

  • Kim, Dong-Cheol;Chung, Kwang-Seop;Kim, Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Ceiling cooling and heating system that consider load arrangement and space in the ceiling needs to be developed. Therefore, experimental and economic changes were done to verify the performance of compact type VAV. The test results were as follow. 1) Noise test result, measuring approximately 50.4 dB~56.6 dB (before ceiling in landfill), had a better ceiling deadline than the current measure, about a 10 dB noise reduction, so that the office baseline (40~50 dB) noise was judged to be less than test. 2) For the static pressure test result, taking out an outside hydrostatic 25 mmAq, 24.8 mmAq was measured, respectively, at the point. 3) For the life-cycle cost analysis result, the initial investment cost, maintenance replacement costs, and maintenance costs increased 0.2%, but the energy savings ratio was 19.5% while the whole life cycle savings of 40 years LCC was reduced 11.9%.

A Study of Solar heat removal Impact with Air-Vent Wall (통기벽체적용 건물에서의 일사열 제거효과 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Ventilation through air vent system in a building envelope is expected to be an effective measure to release solar radiation. An external surface of a wall absorbs solar radiation and transfers it to the air in the cavity. The warmed air gets buoyant force. So when openings are provided at the top and bottom of the cavity, the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. This reduces the further heat transmission into the built environment. This natural ventilation effect seems to be steady and strong. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable.

Optimal Design of Brake System considering Vehicle Vibration and Durability of Rotor (차량진동 및 Rotor 내구특성을 고려한 Brake System 의 최적설계)

  • Kim, B.S.;Kim, H.Y.;Kim, K.W.;Son, Y.K.;Lee, D.G.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.764-769
    • /
    • 2001
  • Brake-induced vibrations of a vehicle such as brake judder are determined by the excitation of brake torque variations and by their transfer to the driver's contact points via suspension, body and steering system. The formation of brake torque variation is mainly determined by static and dynamic disk thickness variations. The vibration transfer from the excitation by brake torque variation to the perception by the driver depends on the kinematic and dynamic behaviour of the components in the transfer path. Optimization of the judder performance can be achieved either by minimizing the excitation or by reduction of the judder sensitivity of the vehicle. In this paper, the optimization process of a front rotor is suggested to reduce brake judder considering the cooling performance of the rotor, the judder sensitivity of the vehicle and durability of the rotor.

  • PDF

Thermo-economic approach for absorption air condition onboard high-speed crafts

  • Seddiek, Ibrahim S.;Mosleh, Mosaad;Banawan, Adel A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.460-476
    • /
    • 2012
  • High-speed crafts suffer from losing a huge amount of their machinery energy in the form of heat loss with the exhaust gases. This will surely increase the annual operating cost of this type of ships and an adverse effect on the environment. This paper introduces a suggestion that may contribute to overcoming such problems. It presents the possibility of reusing the energy lost by the ships' exhaust gases as heating source for an absorption air condition unit onboard high-speed crafts. As a numerical example; the proposed method was investigated at a high-speed craft operating in Red Sea between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory. It showed the possibility of providing the required ship's air condition cooling load during sailing and in port. Economically, this will reduce the annual ship's operating cost. Moreover, it will achieve a valuable reduction of ship's emissions.