• Title/Summary/Keyword: Cooling Condition

Search Result 1,247, Processing Time 0.033 seconds

Temperature characteristics of condenser and evaporator of Air-conditioner applying variable capacity compressor under cooling condition (가변용량 압축기를 적용한 에어컨의 냉방운전 시 응축 및 증발온도 특성)

  • Kwon, Young-Chul;Chun, Chong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1325-1331
    • /
    • 2007
  • In order to investigate the cooling capacity of an air-conditioner applying a variable capacity compressor and the temperature characteristics on a condenser and an evaporator, the experiment on the operation characteristics of the air-conditioner was performed along a compressor operation ratio and an indoor/outdoor temperatures, under a cooling operation mode. The system characteristics were measured by the psychrometric calorimeter. The cooling capacity increased with decreasing the outdoor temperature and increasing the indoor temperature. Also, it increased with increasing the compressor operation ratio. The temperature of the condenser was more sensitive for the variation of the outdoor temperature and the temperature of the evaporator was more sensitive for the variation of the indoor temperature. The operation characteristics of the cycle used in this present were also analyzed by a pressure-enthalpy chart.

  • PDF

Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles (자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

Experimental Study on Heat Transfer and Pressure Drop of Heat Exchangers for Cooling Fan Coil Unit (냉방용 팬코일 유닛 열교환기의 열전달 및 압력강하 특성 실험연구)

  • Kwon, Young-Chul;Ko, Kuk-Won;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.599-604
    • /
    • 2008
  • An experimental study has been performed to investigate the air-side capacity and pressure drop of the fin-tube heat exchanger for a fan coil unit under a cooling condition. The experimental data of five kinds of slit fin-tube heat exchangers were measured using an air-enthalpy calorimeter and a constant temperature water bath. Cooling capacities at the air and water rating flow rates were larger at the lower inlet water temperature. With increasing the water flow rate, the cooling capacity increased at the constant rate. Under the lower inlet water temperature, since the condensate was generated more on the fin-tube surface, the air-side pressure drop of the heat exchanger was larger.

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower

  • Na, Min Wook;Shin, Doyoung;Park, Jae Hyung;Lee, Jeong Ik;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.964-974
    • /
    • 2020
  • The small modular reactors (SMRs) of the integrated pressurized water reactor (IPWR) type have been widely developed owing to their enhanced safety features. The SMR-IPWR adopts passive residual heat removal system (PRHRS) to extract residual heat from the core. Because the PRHRS removes the residual heat using the latent heat of the water stored in the emergency cooldown tank, the PRHRS gradually loses its cooling capacity after the stored water is depleted. A quick restoration of the power supply is expected infeasible under station blackout accident condition, so an advanced PRHRS is needed to ensure an extended grace period. In this study, an advanced design is proposed to indirectly incorporate a dry air cooling tower to the PRHRS through an intermediate loop called indefinite PRHRS. The feasibility of the indefinite PRHRS was assessed through a long-term transient simulation using the MARS-KS code. The indefinite PRHRS is expected to remove the residual heat without depleting the stored water. The effect of the environmental temperature on the indefinite PRHRS was confirmed by parametric analysis using comparative simulations with different environmental temperatures.

A Study on Cooling Characteristics of the LED Lamp Heat Sink for Automobile by Forced Convection (강제대류에 의한 자동차용 램프 방열판의 냉각 특성에 LED 관한 연구)

  • Yang, Ho-Dong;Yoo, Jae-Young;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.117-123
    • /
    • 2018
  • Automotive headlamps have been continuously developed as one of the most important devices for securing the driver's view, and the LED lamps are getting popular in recent years. However, in case of the LED lamps, because the heat generated by the LED lamps are too high, it shorten the product life and lower the LED efficiency. Therefore, this study was investigated the cooling characteristics of the LED lamp heat sink for automobile by forced convection for LED heat generation control. In order to analyze the cooling characteristics of the heat sink, the temperature distribution results were investigated through the experiment and computational analysis under the increase of the air flow velocity, and the convective heat transfer coefficient was obtained. Also, convective heat transfer coefficient was calculated by the theoretical formula under the same condition and compared with experimental and computational results. From the result of this study, as the air flow velocity around the heat sink fins increased, the convective heat transfer coefficient significantly increased, confirming the improvement in the cooling effect.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

HEN Simulation of a Controlled Fluid Flow-Based Neural Cooling Probe Used for the Treatment of Focal and Spontaneous Epilepsy

  • Mohy-Ud-Din, Zia;Woo, Sang-Hyo;Qun, Wei;Kim, Jee-Hyum;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Brain disorders such as epilepsy is a condition that affects an estimated 2.7 million Americans, 50,000,000 worldwide, approximately 200,000 new cases of epilepsy are diagnosed each year. Of the major chronic medical conditions, epilepsy is among the least understood. Scientists are conducting research to determine appropriate treatments, such as the use of drugs, vagus nerve stimulation, brain stimulation, and Peltier chip-based focal cooling. However, brain stimulation and Peltier chip-based stimulation processes cannot effectively stop seizures. This paper presents simulation of a novel heat enchanger network(HEN) technique designed to stop seizures by using a neural cooling probe to stop focal and spontaneous seizures by cooling the brain. The designed probe was composed of a U-shaped tube through which cold fluid flowed in order to reduce the temperature of the brain. The simulation results demonstrated that the neural probe could cool a 7 $mm^2$ area of the brain when the fluid was flowing atb a velocity of 0.55 m/s. It also showed that the neural cooling probe required 23 % less energy to produce cooling when compared to the Peltier chip-based cooling system.

Basic Properties of Concrete with Ultrafine-Blaine Air Cooling Slag as Admixture (초미분말 서냉 슬래그를 혼화재로 사용한 콘크리트의 기초적 특성)

  • Heo, Jae-Hyuk;Jeong, Sung-Wook;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, a test has been carried out to solve the problem with ground granulated blast-furnace slag, low early strength & lack of supply and to find out a way to use as concrete admixture of the ultrafine blaine air cooling slag which is all disposed as the by product of air cooling slag and its test was conducted to the replacement rate of ultrafine blaine air cooling slag & mixing condition of every concrete admixtures by type for the purpose of obtaining later a basic data for practical use of the cement that used ultrafine blaine air cooling slag by conducting comparative analysis. If ultrafine-blaine air cooling slag is used to the concrete following the results, a high efficiency water reducing agent won't be needed much for flow acquisition due to a high increase in flow, and the stripping time of concrete form will be shortened thanks to the acquisition of early strength, And though, it has the problems with long term strength which is similar or a little lower than the 3 types of ground granulated blast-furnace slag, it's still applicable as the substitute materials for 3 types of ground granulated blast-furnace slag at 10, 15% replacement rate of ultrafine-blaine air cooling slag, at which it shows higher activation index than 3 types of ground granulated blast-furnace slag.

Effect of Cooling Conditions on Microstructures and Mechanical Properties in API X80 Linepipe Steels (API X80 라인파이프강의 미세조직과 기계적 특성에 미치는 냉각조건의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Bae, Jin-ho;Kim, Kisoo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.523-532
    • /
    • 2009
  • In this study, four API X80 linepipe steel specimens were fabricated with varying cooling rates and finish cooling temperatures, and their microstructures and crystallographic orientations were analyzed to investigate the effects of cooling conditions on their tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite, and secondary phases such as martensite and martensiteaustenite constituent. The volume fraction of secondary phases increased with increasing cooling rate, and the higher finish cooling temperature resulted in the reduction in volume fraction and grain size of secondary phases. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine acicular ferrites having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement of Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper shelf energy and the lowest energy transition temperature because it contained a large amount of fine secondary phases homogeneously distributed inside fine acicular ferrites, while its tensile properties well maintained.