• Title/Summary/Keyword: Cooling Channel

Search Result 438, Processing Time 0.022 seconds

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

Design of cooling channel in hot press forming process of Boron Steel (보론강 고온 성형 공정의 냉각 채널 설계)

  • Hong, S.M.;Ryu, S.Y.;Park, J.K.;Yoon, S.J.;Kim, K.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.367-370
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. In the study, the heat conductive die and the cooling channel were designed by the numerical simulation and the effect of three different parameters were determined to improve cooling characteristics.

  • PDF

Effects of Geometry of a Boot-Shaped Rib on Heat Transfer and Pressure Drop (신발형 리브의 형상변화가 열전달 및 압력 강하에 미치는 영향)

  • Seo, Jae-Won;Kim, Jun-Hee;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.66-73
    • /
    • 2015
  • This paper deals with a parametric study on boot-shaped ribs in a rectangular cooling channel. Numerical analysis of the flow and heat transfer was performed using three-dimensional Reynolds averaged Navier-Stokes equations with the Speziale, Sarkar and Gatski turbulence model. The parametric study was performed for the parameters, tip width-to rib width, tip height-to-rib height, rib height-to-channel height, and rib height-to-width ratios. To assess the cooling performance and friction loss, Numsselt number and friction factor were defined as the performance parameter, respectively. The results showed that the cooling performance and friction loss were seriously affected by the four geometric parameters.

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

Numerical Evaluation of the Cooling Performance of a Core Catcher Test Facility

  • Lee, Dong Hun;Park, Ik Kyu;Yoon, Han Young;Ha, Kwang Soon;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • A core catcher is considered as a promising engineered system to stabilize the molten corium in the containment during a postulated severe accident in a nuclear power plant. Conceptually, the core catcher consists of a carbon steel body, sacrificial material, protection material, and engineered cooling channel. The cooling capacity of the engineered cooling channel should be guaranteed to remove the decay heat of the molten corium. The flow in ex-vessel core catcher is a combined problem of a two-phase flow in the engineered cooling channel and a single-phase natural circulation in the whole core catcher system. In this study, the analysis of the test facility for the core catcher using the CUPID code, which is a three-dimensional thermal-hydraulic code for the simulation of two-phase flows, was carried out to evaluate its cooling capacity.

A Study on the LRE Thrust Chamber Regenerative Cooling Design (액체로켓엔진 추력실의 재생냉각 기관 설계)

  • Kim, Ji-Hoon;Park, Hee-Ho;Kim, Yoo;Hwang, Soo-Kwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.25-35
    • /
    • 2002
  • A calculation procedure for designing LRE regenerative cooling system is introduced. In LRE thrust chamber, heat is transfered from the hot gas to the wall by convection and radiation, then conduction through the wall and finally convection to the liquid coolant. A cooling channel is designed on the basis of heat transfer rate calculated by using criterial method and integral method. The result is compared with existing Russian cooling channel design code. Also a design logic and quantitative effect of various parameters were introduced to help better understanding for those who is not familiar to LRE system.

Influence of an Aspect Ratio of Rectangular Channel on the Cooling Performance of a Multichip Module

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.350-357
    • /
    • 2000
  • Experiments were performed by using PF-5060 and water to investigate the influence of an aspect ratio of a horizontal rectangular channel on the cooling characteristics from an in-line $6{\times}1$ array of discrete heat sources which were flush mounted on the top wall of the channel. The experimental parameters were aspect ratio of rectangular channel, heat flux of simulated VLSI chip, and channel Reynolds number. The chip surface temperatures decreased with the aspect ratio at the first and sixth rows, and decreased more rapidly at a high heat flux than at a low heat flux. The measured friction factors at each aspect ratio for both water and PF-5060 gave a good agreement with the values predicted by the modified Blasius equation within ${\pm}7%$. The Nusselt number increased as the aspect ratio decreased, but the increasing rate of Nusselt number reduced as the aspect ratio decreased. A 5:1 rectangular channel yields the most efficient cooling performance when the heat transfer and pressure drop in the test section were considered simultaneously.

  • PDF

NUMERICAL STUDIES ON FLOWS WITH STRONG PROPERTY VARIATIONS THROUGH STRAIGHT RECTANGULAR CHANNELS (곧은 사각채널을 통과하는 물성 변화가 큰 유동에 대한 수치해석)

  • Choi, Nam-Jung;Choi, Yun-Ho
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2007
  • The flowfield characteristics in a straight rectangular channel have been investigated through a numerical model to analyze the regenerative cooling system that is used in rocket engine cooling. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and heat transfer characteristics. Of particular interest is the improved understanding of the physical characteristics of such flows through parametric studies. The approach used is a numerical solution of the full Navier-Stokes equations in the three dimensional form including the arbitrary equation of state and property variations. The present study compares constant and variable property solutions for both laminar and turbulent flow. For laminar flow, the variation of aspect ratio is examined, while for turbulent flow, the effects of variation of channel length and Reynolds number are discussed.

CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR (가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석)

  • In, W.K.;Shin, C.B.;Park, J.Y.;Oh, D.S.;Lee, C.Y.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

Forced Convective Cooling Characteristics with Stacked Modules of Multi-PCBs' in Telecommunication Cabinet (다중 PCB 적층 모듈구조의 정보통신용 캐비넷 강제대류 냉각특성 연구)

  • Kim, W.T.;Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.230-239
    • /
    • 1996
  • A multi-faceted experimental investigation has been carried out to study the cooling performance for stacked modules in arrays of heat generating rectangular modules deployed along PCB's in the enclosed cabinet. The main parameters which have an important effect on cooling characteristics are flow velocity, channel spacing, installation of fan unit, attachment of heat sink, and acoustic noise. The results of individual effect are very helpful for the electronic packaging designer. In order to improve the cooling performance, it is certain that the enlargement of channel space is obviously effective, while this id disadvantageous in high density electronic packaging. Each of the paameters is quantitatively examined as cooling performance and the correlation of Reynolds number to Nusselt number is compared with previous study.

  • PDF