• Title/Summary/Keyword: Cooling Blade

Search Result 159, Processing Time 0.024 seconds

Cooling Performance of PC cooling Fan For Various Cooling Fan Blade numbers and Design Shapes (PC용 냉각팬의 형상 및 블레이드의 수 변화에 따른 냉각성능)

  • Park, Won-Keol;Lee, Dong-Ryul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.685-689
    • /
    • 2012
  • 본 연구는 PC용 냉각팬의 효율적인 설계를 위하여 냉각팬의 형상 변경 및 블레이드의 수 변화를 통해서 PC 부품 발열체의 온도변화를 수치해석적으로 수행하였다. 기존의 냉각팬 형상을 기준으로 블레이드의 수를 변화시키고 실제 형상을 변경한 냉각팬을 동일한 설계 입력조건를 적용하여 비교 분석하여 냉각성능을 파악하였다. 두 Case를 비교한 결과 기존 형상은 블레이드의 수가 증가 할수록 냉각효과가 커졌고, 형상을 변경한 냉각팬의 경우 Blade 6에서 가장 큰 냉각 효과를 보였다. 그리고 Blade 6과 8을 비교해 봤을 때 두 블레이드 사이에서 온도차이는 미소한차이로 냉각효과를 비교하기 어려웠다. 두 Case에서 제작과정과 비용을 비교해 보았을 때 Case 2의 Blade 6 경우가 더 우수한 것으로 보아 형상을 변경한 블레이드에서 최적설계를 얻을 수가 있었다.

  • PDF

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint (압력감응 페인트를 이용한 평판에서의 막냉각 계수 측정)

  • Park, Seoung-Duck;Lee, Ki-Seon;Cho, Young-Shin;Kim, Hark-Bong;Kwak, Jae-Su;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.329-334
    • /
    • 2007
  • Various cooling techniques have been applied to the gas turbine blade in order to reduce heat load to the blade. On the blade surface, film cooling method is used and the accurate information of film cooling effectiveness should be evaluated in order to predict the exact temperature distribution in the blade. In this study, pressure sensitive paint (PSP) was used to measure the film cooling effectiveness on a flat plate. Results showed that PSP technique successfully evaluated the distribution of film cooling effectiveness. Three blowing ratios of 0.5, 1, and 2 were tested and the film cooling effectiveness near holes decreased as the blowing ratio increased, however, increased far downstream from the holes.

  • PDF

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor (외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Lee, Kwan-Soo;Wang, Se-Myung;Shim, Ho-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2518-2523
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type of a BLDC motor are numerically analyzed using three-dimensional turbulence modeling. In an advance design of BLDC motor, cooling blades and holes are preferred for the enhanced cooling performances. Rotating the blades and holes generates axial air flow passing through stator slots, which cools down stator by forced convection. For the present study, a new design of the BLDC motor has been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes, and cooling blades and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

  • PDF

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 바른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.-M.;Kim, Youn J.;Cho, H.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.298-303
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1{\times}10^4$. The effect of coolant flow rates was studied for blowing ratios of 0.7, 0.9, 1.2 and 1.5, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

  • PDF

Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing (비등간격 블레이드를 이용한 저소음 쿨링팬 개발)

  • Lee, Jeong-Han;Nam, Kyung-Ook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1109-1114
    • /
    • 2007
  • When unifying the functions of widely used two-fan, engine cooling system into a single unit, the noise and power issues must be addressed. The noise problem due to the increased fan radius is a serious matter especially as the cabin noise becomes quieter for sedans. Of the fan noise components, discrete noise at BPF's (Blade Passing Frequency) seriously degrades cabin sound quality. Unevenly spaced fan is developed to reduce the tones. The fan blades are spaced such that the center of mass is placed exactly on the fan axis to minimize fan vibration. The resulting fan noise is $3{\sim}11$ dBA quieter in discrete noise level than the even bladed fan.

  • PDF

Numerical Analysis of the Viscous Flow Around a Front End Cooling Fan of the Car (자동차 프런트 엔드 쿨링팬 주위의 점성유동 해석)

  • Oh, Keon-Je;Bae, Chun-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • Viscous flow around a front end cooling fan of the car is numerically investigated. The Navier-Stokes equations and the continuity equation are solved in the flow domain. The Reynolds stresses are modelled using the $k-{\varepsilon}$ turbulence model. The governing equations are discretized with the Finite Volume Method. The pressure and the velocity are linked with the SIMPLE algorithm. Flow and pressure characteristics around the fan are investigated. The pressure sharply increases through the fan blade. Pressure variations on the pressure and suction sides of the fan are well represened in the calculations. The flow streamlines in the blade passage are nearly parallel to the blade, but the slope of streamlines increases near the tip.

  • PDF

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades (냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Wang, Se-Myung;Shim, Ho-Kyung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

A Study on Performance of Cooling Fan for Auto Transmission Oil Cooler in the Large-Size Diesel Engine (대형 디젤엔진 자동변속기 오일쿨러 냉각팬 성능에 관한 연구)

  • Yi, Chung-Seob;Suh, Jeong-Se;Song, Chul-Ki;Yun, Ji-Hun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • This study has investigated numerically and experimentally the flow characteristic of air-cooling fan for transmission oil cooler in the large-size diesel engine. Impellers of cooler were composed of eight normal-scale and eight small-scale blades in the zig-zag pattern. In order to increase the discharge pressure of cooling fan, turbo type of fan blade is proposed in the impeller for transmission oil cooler. The fluidic performance of cooling fan has been estimated numerically by using the commercial code and experimentally carried out with reference on AMCA Standard 210-99. As a result, it is confirmed that the numerical result for performance curve is in good agreement with experimental data.