• 제목/요약/키워드: Cooling Blade

검색결과 159건 처리시간 0.029초

수치해석적 기법을 이용한 횡류홴 성능 평가 (Performance Estimation of Cross-Flow Fan by Numerical Method)

  • 김동원;이준화;박성관;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정 (Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.

설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구 (A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters)

  • 이유엽;조용구;이충휘;오재응
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.

터보냉동기의 소음원 파악 및 저소음화에 대한 연구 (A Study on the Identification of Noise Source and the Noise Reduction Method of a Turbo Chiller)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we identify the noise source and the path of a chiller. This chiller is newly developed for R-l34a refrigerant and 250 RT cooling capacity. The measured overall SPL of the developed turbo-chiller is about 100 dBA. Due to the high rotating speed of the centrifugal impeller, the nun noise source of the chiller is the blade passing frequency and its higher harmonics of the centrifugal impeller. This generated soundpropagates through the duct, and then transmits and radiates to the outer field. From the experiment, it is found that the high frequency noise is mostlytransmitted and radiated through the elbow duct, but the low frequency noise is transmitted and vadiated through the condenser wall. Therefore applying the absorbing material is an effective way of reducing the high and low frequency noise simultaneously. Measurement results show that the application of the sound absorbing material to the elbow duct reduced the overall sound pressure level by 4 dB compared to the 9 dBA reduction for the case of full enclosure. In order to control the generated noise, a dissipativetype silencer is also designed and tested. The silencer reduced the radiated noise about 7.5 dBA.

초미량 정밀살포용 무인헬리콥터의 SW05 로터 양력시험 (SW05 Rotor Lift of an Unmanned Helicopter for Precise ULV Aerial Application)

  • 구영모;석태수;신시균
    • Journal of Biosystems Engineering
    • /
    • 제35권1호
    • /
    • pp.31-36
    • /
    • 2010
  • A small unmanned helicopter was suggested to replace the conventional spray system. Aerial application using an agricultural helicopter helps precise and timely spraying, and reduces labor intensity and environmental pollution. In this research, a rotor system (SW05) was developed and its lift capability was evaluated. Lift force for the dead weight of the helicopter was obtained at the grip pitch angle of $12^{\circ}$. As the pitch angle increased to $14^{\circ}$ and $16^{\circ}$, the payload increased to 176 N and 216 N, respectively. Compared with SW04 airfoil performance in the total lift, the SW05 airfoil showed nearly the same capacity, but the payload of the SW05 was reduced because of the increased dead weight. A rated flight condition was defined as lifting mean payload of 294 N with the grip pitch angles of $16{\sim}17^{\circ}$ at the rotor rotating speed of 850~950 rpm for the adjusted engine power. The fuel consumption would be 4.8~6.0 L/hr, and the air temperature of cooling fan should be kept below $160^{\circ}C$.

적층 복합재 팬-블레이드의 적층각도 최적화 설계 (Design of optimal fiber angles in the laminated composite fan blades)

  • 정재연;조영수;하성규
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.

리어가이더 형상변화에 따른 횡류홴 성능해석 (Analysis of Performance of Cross-Flow Fan with Various Rear Guiders)

  • 김동원;이준환;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2076-2082
    • /
    • 2003
  • A cross-flow fan is widely used on many industrial fields: mining industry, automobile and home appliances, etc. The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between 30% and 40% because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the lower flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow field against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for investigating the flow characteristics in a cross-flow fan including the impeller, the rearguider and the stabilizer. Especially, various types of rearguiders are estimated by numerical and experimental methods to insure the stable operation in the region of lower flow rate. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard ${\kappa}-{\varepsilon}$ turbulence model. ASHRAE standard fan tester is also used to estimate the performance of the modeled crossflow fan.

  • PDF

쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향 (Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs)

  • 이동현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석 (A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향 (Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump)

  • 허형석;이기수;배석정
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.