• Title/Summary/Keyword: Cooling Analysis

Search Result 2,940, Processing Time 0.035 seconds

Numerical Analysis of Cooling Channels for Injection Molding Cycle Time Improvement of Plastic Horn Cover for an Automobile (차량용 플라스틱 혼 커버의 사출성형 싸이클 타임 개선을 위한 냉각 채널의 수치해석 연구)

  • Han, Seong-Ryoel
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.84-90
    • /
    • 2018
  • When producing a plastic horn cover for an automobile, since the interval between the ribs on the inner surface is narrow, conventional cooling channels cannot be applied and cooling of the mold is difficult. For this reason, the molding operation cannot be completed within a set cycle time. In this study, a conformal cooling channel was applied on the mold to solve the cooling problem. Injection molding simulation was carried out to confirm the effectiveness of the conformal cooling channel. In the analysis results, the mold temperature at the rib section decreased by 33%, and the mold temperature also decreased by 31%. This reduction in temperature allowed for molding within a set cycle time and demonstrated the effectiveness of the conformal cooling channel.

A Study on Thermo-Hydraulic Analysis for KSTAR(Korea Superconducting Tokamak Advanced Research) Cooling Line System (KSTAR(Korea Superconducting Tokamak Advanced Research) 냉각 시스템에 대한 열해석 연구)

  • Kim, H.W.;Ha, J.S.;Kim, D.S.;Lee, J.S.;Choi, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.296-301
    • /
    • 2003
  • A study on the engineering design and numerical thermo-hydraulic analysis for KSTAR TF coil structure cooling system has been conducted. The numerical analyses have been done to verify the engineering design of cooling using the commercial code, FLUENT and in-house code for calculating helium properties which varies with cooling tube's heat transfer. Through the engineering design process based on the steady heat balance concepts, the circular stainless steel tube with inner diameter of 4 mm for TF coil has been selected as cooling tube. From normal operation mode analysis results, total 28 cooling tubes were finally chosen. Also, three dimensional cool down analysis for TF coil with designed cooling tube was satisfied with next three design criteria. First is cooling work termination within a month, second is maximum temperature difference within 50 K in TF coil structure and third is exit helium pressure above 2 bar. Consequently, these cool down scenario results can afford to adopt as operating scenario data when KSTAR facilities operate.

  • PDF

The Heat Transfer Analysis of the First Stage Blade (발전용 가스터빈 1단 동익 열전달 해석)

  • Hong, Yong-Ju;Choi, Bum-Seog;Park, Byung-Gyu;Yoon, Eui-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.30-35
    • /
    • 2001
  • To get higher efficiency of gas turbine, The designer should have more higher turbine inlet temperature (TIT). Today, modem gas turbine having sophisticated cooling scheme has TIT above $1,700^{\circ}C$. In the korea, many gas turbine having TIT above $1,300^{\circ}C$ was imported and being operated, but the gas with high TIT above $1,300^{\circ}C$ in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occured at the leading edge, trailing edge near tip, and platform. so to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section. and the thermal barrier coating on the blade surface has important role in cooling blade.

  • PDF

Study on the Design Concept of Impinging Jet Electronics Cooling by Using Axial Fan (축류 팬을 이용한 충돌제트 전자냉각 설계개념에 대한 연구)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • Flow and noise analyses are conducted for examining a new design concept of impinging jet electronics cooling, and the analysis results are compared with conventional electronics cooling techniques. For the application of impinging jet electronics cooling method, the present study considers the air duct where air is supplied by axial fan and air flow from the duct is impinged vertically onto the electronic component heat source. Applying CFD simulation technique and fan noise model to the present cooling scheme, the cooling performance of the impinging jet as well as the operation condition and the noise characteristics of fan are investigated for various impinging jet nozzle conditions and fan models. Furthermore, the impinging jet electronics cooling analysis results are compared with the conventional parallel-flow cooling scheme to give the design concept and criteria of impinging jet cooling method.

Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee K. Y.;Kim H. M.;Han Y. M.;Lee S. Y.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles (철도차량용 IPMSM의 Water-cooling Jacket 설계 연구)

  • Park, Chan-Bae;Lee, Jun-Ho;Lee, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1475-1480
    • /
    • 2013
  • In this paper, the basic design study of a water-cooling jacket, which have reported no cases for applying to railway traction motors so far, were conducted for applying to Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. The basic thermal characteristics analysis of the 110kW-class IPMSM was performed by using 3-dimentional thermal equivalent network method. The necessary design requirements of the water-cooling jacket were derived by analyzing the results of the basic thermal properties. Next, the thermal characteristics analysis technique was established by using the equivalent model of the solenoid-typed pipe to be installed on the inside of the water-cooling jacket for 110kW-class IPMSM. Finally, a design model of 6kW-class water-cooling jacket was derived through the analysis of various design parameters.

Numerical Analysis for Improvement of Cooling Performance in Nanoimprint Lithography Process (나노임프린트 공정에서의 냉각성능 개선에 대한 수치해석)

  • Lee, Ki-Yeon;Jun, Sang-Bum;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.89-94
    • /
    • 2011
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. A major disadvantage of thermal NIL is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to improve the cooling performance in NIL process. In this paper, a numerical analysis model of cooling system in thermal NIL was development by CAD/CAE program and the performance of the cooling system was analyzed by the model. The calculated temperatures of nanoimprint device were verified by the measurements. By using the analysis model, the case that the cooling material is replaced by liquid nitrogen is investigated.

Study on Design of the Cooling System Used for the Propulsion System of the High-Speed EMU (동력분산형 고속전철의 추진시스템용 냉각장치의 설계 연구)

  • Ryoo, Seong-Ryoul;Kim, Sung-Dae;Ki, Jae-Hyung;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1221-1226
    • /
    • 2008
  • Present, the cooling method of using a phase-change heat transfer such as immersed type, heat pipe etc is applied in cooling of high-capacity power semiconductors of the main power system for the high speed train with the concentrated traction. In order to apply these phase-change cooling system to the high speed EMU to be developed, needed are technological researches of consideration of installing space, air passage, light weight material and miniaturization. Although this research establishes design specifications through theoretical analysis and computational analysis from the basic design process of the cooling system of the propulsion system for the high-speed EMU, when details design is completed, present improvement subject and optimum design before manufacturing the prototype of the cooling system on the basis of analysis results. And then, carried out will be the performance tests through prototype manufacture and reliability estimation by components of cooling system.

  • PDF