• 제목/요약/키워드: Cooling Air Velocity

검색결과 232건 처리시간 0.03초

핵 융합로 제1벽의 냉각성능에 관한 수치해석적 연구 (Numerical analysis of the cooling effects for the first wall of fusion reactor)

  • 정인수;황영규
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.18-30
    • /
    • 1999
  • A heat transfer analysis for the two-dimensional (2-D) steady state using finite difference method (FDM) is performed to predict the thermal behavior of the primary first-wall (FW) system of fusion reactor under various geometric and thermo-hydraulic conditions, such as the beryllium (Be) armor thickness, pitch of cooling tube, and coolant velocity. The FW consists of authentic steel (type 316 stainless steel solution annealed) for cooling tubes, Cu for cooling tubes embedding material, and Be for a protective armor, based on the International Thermonuclear Experiment Reactor (ITER) report. The present 2-D analysis, the control volume discretized with hybrid grid (rectangular grid and polar grid) and Gauss-Seidel iteration method are adapted to solve the governing equations. In the present study, geometric and thermo-hydraulic parameters are optimized with consideration of several limitations. Consequently, it is suggested that the adequate pitch of cooling tube is 22-32mm, the beryllium armor thickness is 10-12mm, and that the coolant velocity is 4.5m/s-6m/s for $100^{\circ}C$ of inlet coolant temperature. The cooling tube should locate near beryllium armor. But, it would be better for locating the center of Cu wall, considering problems of material and manufacturing. Also, 2-D analysis neglecting the axial temperature distribution of cooling tube is appropriate, regarding the discretization error in axial direction.

  • PDF

청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향 (The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

고발열 전자부품 냉각용 써모사이폰의 냉각특성에 관한 연구 (Experimental study on the cooling characteristics of thermosyphon for the high power electronic components)

  • 김광수;김원태;송규섭;이기백
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.137-146
    • /
    • 1998
  • The experimental study is concerned with two-phase closed thermosyphons, (i.e., wickless heat pipes) for the cooling of high power electronic components in telecommunication system. The thermosyphon which can deal with a high heat flux of up to $4.9W/cm^2$ is developed, and the cooling characteristics of thermosyphon is analyzed according to design parameters which are the types of and quantity of working fluid, number of pipes, wire insertion in pipe, inclination angle of thermosyphon, and cooling air velocity. Using water as working fluid is superior cooling performance compared to using acetone, and cooling performance is improved as the number of thermosyphon becomes larger, inserting wires in the pipes, and inclination of $30~60^{\circ}$.

  • PDF

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

냉각탑용 직교류형 플라스틱 공기가열기의 열전달 및 압력손실 (Heat Transfer and Pressure Drop Characteristics of Cross-Flow Plastic Air Heater for a Cooling Tower)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6072-6081
    • /
    • 2013
  • 본 연구에서는 냉각탑 출구의 상대습도를 낮춰 백연을 저감하기 위한 목적으로 쉐브론형, 웨이브형 그리고 딤플형 공기가열기 시료에 대한 성능시험을 수행하였다. 실험은 시료의 전방풍속 1~3 m/s, 물 유량 0.19~0.33 kg/s 범위에서 수행되었다. 실험 결과 모든 시료에서 전열량은 전방풍속과 물 유량이 증가할수록 증가하였다. 공기측 압력손실도 풍속이 증가할수록 증가하였다. 동일 풍속에서 전열량은 쉐브론 형상에서 가장 크고 (평판의 1.5~1.7배) 딤플, 웨이브, 평판 순으로 나타났다. 소비동력 대비 전열량도 쉐브론 형상에서 딤플 형상보다 15% 정도 크게 나타났다. 하지만 다른 세 종류의 형상에서는 큰 차이를 보이지 않았다.

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

모델실험 및 수치해석을 통한 페리미터존 에어배리어 공조방식웨 열성능 평가 (Evaluation of Thermal Performance for Air-Barrier Air-conditioning System in Perimeter Zone by Scale Model Experiment and Simulation)

  • 함흥돈;박병윤;손장열
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.947-955
    • /
    • 2005
  • For the purpose of evaluating the thermal performance for air-barrier air conditioning system in perimeter zone, two air-conditioning systems, conventional perimeter air-conditioning system and air-barrier system, are evaluated and compared by scale model experiment and simulation during cooling season. As a result, measurement shows that supply air velocity of 1 m/s in the upstream direction at perimeter is more effective. Air-barrier system could reduce the cooling energy by $10\sim20\%$ compared with conventional system. Numerical simulation was carried out considering solar effect for reliable result. This method has improved the accuracy of numerical simulation for the space affected by the solar radiation. Both measurement and simulation results show that supply air velocity of 1 m/s at perimeter is the most effective.

압축 공기 냉각을 이용한 자기 변형 구동기의 열해석에 관한 연구 (A Study on Thermal Analysis for Magnetostrictive Actuator Using Compressed Air Cooling)

  • 곽용길;;황진동;김선호;안중환
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.388-394
    • /
    • 2009
  • Precision positioning system with magnetostrictive actuator(MA) has widely used in manufacturing devices to control the positioning accuracy to meet the high load and stroke requirements. It has many advantage in comparison with piezoelectic actuator; high force, high strain, high efficient etc. But, the performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. Therefore, thermal strain of magnetostrictive material obstructs precision position control of magnetostrictive actuator, magnetostrictive actuator is need of cooling system. In this paper, cooling system using compressed cold air is developed and proper temperature and velocity of compressed cold air is studied by thermal analysis according to applied current.

  • PDF

채널 내 돌출된 열원의 냉각특성 실험 (Experiment on the Cooling Characteristics of Protruding Heat Sources in a Channel)

  • 신지영;손영석;김상민
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.788-795
    • /
    • 2004
  • Cooling characteristics of protruding heat sources in a parallel channel with or without baffles are studied experimentally, The test section consists of two channels formed by two covers and one board made of polycarbonate which has three uniform heat source blocks. Five different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature of cooling medium, the temperature of the block surface are measured. The results are compared to examine the cooling characteristics of the different cooling methods.

돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성 (Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.