• 제목/요약/키워드: Cooling & Heating Capacity

검색결과 182건 처리시간 0.383초

곡물냉각기의 개발 (Development of a New Commercial Grain Cooler)

  • 김동철;김의웅;금동혁;한종규
    • 한국식품저장유통학회지
    • /
    • 제11권2호
    • /
    • pp.250-256
    • /
    • 2004
  • 국내의 기상조건 및 벼의 수확후 처리여건에 적합한 곡물냉각기를 개발하고, 냉각능력, 재열능력, 가열능력, 소요전력 및 성능계수 등의 성능을 측정하여 설계조건에 적합한지를 분석하였다. 그 결과를 요약하면 다음과 같다. 압축기 무부하전자변과, 재열기 및 증발기에 고온고압의 냉매가스를 공급하여 냉각능력을 0∼100%까지 제어할 수 있고, 온도 5$^{\circ}C$이상, 상대습도 54∼95%의 정온정습 공기를 발생할 수 있는 1일 최대 벼 200톤을 냉각할 수 있는 곡물냉각기를 개발하였다. 이 곡물냉각기의 최대냉각능력은 35,284㎉/hr, 송풍량 및 정압은 각각 120㎥/min, 279mmAq이었으며, 재열기를 통한 냉각공기의 최대 온도상승 및 상대습도의 저하범위는 각각 7.6∼8.6$^{\circ}C$, 34.5∼41.0%이었으며, 최대가열능력은 5.6$^{\circ}C$이었다. 또한, 최대 소요동력은 22.8㎾이었으나, 압축기의 무부하 전자변이 작동될 때는 총소요동력의 33.3%, 압축기 소요축동력의 44.7%가 절약되는 것으로 나타났으며, 제어조건에 따라 전체소요동력의 26.7~33.3%정도가 절약되는 것으로 나타났으며, 냉동시스템의 성능계수는 과냉각으로 인해 표준냉동사이클하에서의 4.0보다 높은 4.71이었으며, 전성능계수는 1.8로 나타났다.

태양에너지 연구 시험센타 설계 및 효율에 관한 연구 (Design & Performance of the Solar Energy Research & Test Center)

  • 오정무;이종호;최병완;조일식
    • 태양에너지
    • /
    • 제2권2호
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF

부산지역 대형병원 냉방장비의 용량설정 실태조사 (Survey Study of Optimal Cooling Equipment Capacity of the Large Hospitals in Busan City)

  • 이지원;진경일;김세환
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.105-110
    • /
    • 2014
  • The basic factors determining the amount of energy used in hospital buildings are weather conditions and building factors. But the real energy consumer is central plant equipment such as boilers and chillers that produce thermal energy for heating and cooling. Inaccurate decision of the primary equipment's size can cause a high initial-cost, an excessive equipment space, a wasted energy by low operation-efficiency and shortening of the machine's life. In this reason, the decision of optimal size for central plant equipment is very important. There are several factors for the decision such as an operation factor, a factor (equipment factor), piping losses and a simultaneous usage factor applied in the sizing process except a basic cooling load. But there is no standard method for applying those factors. Usually, factors are applied individually by an experience or custom of each engineer. In this study, the authors emphasize the meaning and the problem of those factors, examine them by analyzing factors which were applied to actual practices, and propose the recommendation value of safety, load, operation factors and application methods.

창호 블라인드와 상변화물질 적용에 의한 냉방 에너지 사용량 절감효과에 대한 검토 연구 (Experimental Study of Cooling Energy Saving Verification Using Blinds and Phase Change Material(PCM))

  • 송영학;김기태;구보경;이건호
    • 설비공학논문집
    • /
    • 제26권1호
    • /
    • pp.26-31
    • /
    • 2014
  • This study looks into changing building energy use by application of phase change material (PCM). PCM does not need extra energy for operation and is used for reducing building energy use and, CO2 output by displaying semi-permanent effects after installation. It also is able to avoid the maximum electric power time-zone by inducing a time lag phenomenon of cooling and heating loads with high thermal capacity using latent heat. To verify the efficiency of blinds and PCM, tests about the PCM operation mechanism using air conditioning machinery and nocturnal panel cooling were done. In the test results of the case using PCM installation, a $45^{\circ}$ blind angle with machinery air conditioning and nocturnal panel cooling at the same time shows a 22 percent energy saving effect against general space. The test results of each case were compared and analyzed based on the blind and window opening settings. Finally, the energy reduction of existing buildings using PCM application was reviewed based on the final measurement results.

지하수 이용 지열 히트펌프 시스템의 주거용 건물 적용시 난방성능 특성에 관한 연구 (A Study on the Heating Performance of SCW Type Geothermal Heat Pump System for Residential House)

  • 김주화;김주영;홍원화;안창환
    • 한국주거학회논문집
    • /
    • 제19권5호
    • /
    • pp.11-18
    • /
    • 2008
  • Geothermal heat pump system using sanding column well type with their ground heat exchanger can be used as a highly efficient source of heating and cooling in massive buildings. But there is no case of a small scale residential house. So in the residential house this study estimated heating coefficient of performance (COP) of geothermal heat pump system using sanding column well type which is excellent in heat recovery. As a result of analysis, The COP of heat pump is over average 6 and is excellent. And in consequence of making a comparative study according to the bleeding, the COP is higher in the case of bleeding. Therefore, bleeding affects the performance of the system. This study has shown performance result that stands on actual data. Therefore, this study provides ground data that needs when a low capacity of system designs for a residence with confidence elevation.

Fluid Flow and Heat Transfer in a Super high-Pressure Mercury Lamp using CFD

  • Jang, Dong Sig;Lee, Yeon Won;Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon Hwan
    • International Journal of Safety
    • /
    • 제11권2호
    • /
    • pp.5-9
    • /
    • 2012
  • The discharge properties of super high-pressure mercury lamp are due to resistance heating for energy input, and results in temperature increase. The cooling equilibrium state is reached by the heat conduction, convection and radiation. In order to predict the fluid flow and heat transfer in and around the mercury lamp accurately, its visualization is of utmost importance. Such visualization is carried out by CFD program in this study. We focus on Anode shape to calculate four cases, namely AA, AB, AC and AD separately, and compare the temperature distribution and velocity vector in each case to predict cooling capacity and fluid flow properties. It can be concluded that the shape of anode plays an important role that affects the fluid flow and heat transfer in a mercury lamp.

가열 전극 통합 채널 공진기의 진공 환경 구동에 의한 열물성 측정의 민감도 향상 (Sensitivity Enhancement for Thermophysical Properties Measurements via the Vacuum Operation of Heater-integrated Fluidic Resonators)

  • 고주희;이정철
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.39-43
    • /
    • 2023
  • Microscale thermophysical property measurements of liquids have been developed considering the increasing interest in the thermal management of cooling systems and energy storage/transportation systems. To accurately predict the heat transfer performance, information on the thermal conductivity, heat capacity, and density is required. However, a simultaneous analysis of the thermophysical properties of small-volume liquids has rarely been considered. Recently, we proposed a new methodology to simultaneously analyze the aforementioned three intrinsic properties using heater-integrated fluidic resonators (HFRs) in an atmospheric pressure environment comprising a microchannel, resistive heater/thermometer, and mechanical resonator. Typically, the thermal conductivity and volumetric heat capacity are measured based on a temperature response resulting from heating using a resistive thermometer, and the specific heat capacity can be obtained from the volumetric heat capacity by using a resonance densitometer. In this study, we analyze methods to improve the thermophysical property measurement performance using HFRs, focusing on the effect of the ambience around the sensor. The analytical method is validated using a numerical analysis, whose results agree well with preliminary experimental results. In a vacuum environment, the thermal conductivity measurement performance is enhanced, except for the thermal conductivity range of most gases, and the sensitivity of the specific heat capacity measurement is enhanced owing to an increase in the time constant.

열전소자를 이용한 가정용 의류 건조기의 성능에 관한 실험적 연구 (A Study on the Performance of Home Clothes Dryer using Thermoelectric Module)

  • 이민재;공상운;김종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2073-2078
    • /
    • 2007
  • This study was performed to develop a dryer for home clothes using thermoelectric module. The thermoelectric module was used as a heat source and a dehumidification device because it has heating part and cooling part at once. To design for maximizing the energy efficiency and the rate of dehumidification, the parameters of the dryer using thermoelectric module are heat capacity and air flow rate. This study showed that the thermoelectric module can be used in the clothes dryer and energy efficiency of clothes dryer be better than that of electric heating dryer.

  • PDF

한국의 냉난방 설계용 외기조건 분석 (An Analysis of the Outdoor Design Conditions for Heating and Air Conditioning in Korea)

  • 방규원
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.322-356
    • /
    • 1985
  • The outdoor design conditions for summer and winter are basic data required for determining the heating and cooling loads and HVAC equipment capacity. The latest study reported was based on the 1960's weather data, which is widely used by HVAC design engineers in Korea. The purpose of this paper is to update the outdoor design conditions for HVAC loads and equipments based on the weather data for the 1970's. The weather conditions of 24 sites, namely Sokcho, Chuncheon, Gangreung, Seoul, Inchon, Ulreungdo, Suweon, Seosan, Cheongju, Daejeon, Chupungryeong, Pohang, Gunsan, Daegu, Jeonju, Ulsan, Kwangju, Busan, Chungmu, Mokpo, Yeosu, Jeju, Seogwipo, and Jinju have been analyzed to calculate the outdoor design conditions. This analys is performed on the basis of TAC $1\%,\;TAC\;2.5\%,\;and\;TAC\;5\%$.

  • PDF

다단계 온도프리스트레싱 공법의 현장적용을 위한 실험적 연구 (Experimental Study on Application of Multi-Stepwise TPSM)

  • 안진희;김준환;김상효;이상우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.91-100
    • /
    • 2008
  • 다단계 온도프리스트레싱 공법은 기존의 프리스트레싱 공법과 단면접합공법의 장점을 이용한 새로운 개념의 프리스트레싱 공법으로 프리스트레싱용 커버플레이트를 다단계로 가열하여 거더의 하부플랜지에 고장력볼트로 접합한 뒤, 열원을 제거하여 발생하는 다단계 수축력을 보강에 필요한 프리스트레싱력으로 이용한 공법이다. 본 연구는 다단계 온도프리스트레싱 공법의 실제적인 적용성 평가를 위하여 다단계 가열을 위한 가열 장비의 가열성능 평가 실험을 실시하였으며, 라멘형 강거더 임시교량을 제작하고 다단계 온도프리스트레싱 공법을 적용하여 도입 프리스트레싱력을 확인하였다. 또한, 트럭을 이용한 하중재하 실험을 실시하여 구조해석 결과와 비교하였다.