• Title/Summary/Keyword: Cooled horizontal tube

Search Result 27, Processing Time 0.025 seconds

An Experimental Study on Sea Water Freezing Behavior Along Horizontal Cooled Cylinder With Bubbly Flow (기포를 동반한 유동장에서의 냉각원과 주위의 해수동결에 관한 실험적 연구)

  • Park, D.S.;Yoon, S.H.;Kim, M.H.;Lee, Y.H.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.825-832
    • /
    • 2001
  • This study was experimentally performed to investigate freezing behavior of sea water along horizontal cooled a circular tube with bubbly flow. The experiments were carried out for a variety of parameter, such as sea water velocity, air-bubble flow rate, and cooled-tube temperature. The shape of freezing layer, freezing rate and salinity of frozen layer were observed and measured. And the flow patterns around cooled tube were visualized using the PIV to analyze the relationship between the flow structure and the freezing characteristics. It was found that the experimental parameters gave a great influence on the freezing rate and the salinity of the frozen layer.

  • PDF

Ice Marking Pattern of Flowing Organic Water Solution in a Horizontal Cooled Tube (수평냉각관내에서 유동하는 유기수용액의 제빙형태)

  • 박기원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.52-57
    • /
    • 2000
  • Recently large capacity of electric equipment and increasing in atomic power generation are shown. One of the reason is shortage of the electric power supply for air conditioning load during summer. And every consumer is concerning about economical refrigeration and air conditioning system to decreases electric power consumption and decrease in global warming. For these necessities, ice making thermal storage system is required. Therefore, in this paper, the possibility of continuous slurry ice making using flowing organic water solution in cooled circular tube has been investigated. The experiments was carried out under some parameters of concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in tube, As a result, four types of operating conditions in the pipe, that was supercooling, continuous ice making, intermittent ice making and ice blockage, were classified . And it was found that the critical condition for continuous ice making was acquired as a function of these experimental parameters.

  • PDF

A Study on Heat and Mass Transfer Characteristics of LiBr-$H_2$O Solution with a Sufactant Flowing over a Cooled Horizontal Tube (계면활성제 첨가시 수평 냉각관 외부를 흘러내리는 LiBr수용액의 열 및 물질전달 특성에 관한 연구)

  • 김경희;설신수;이상용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Heat and mass transfer characteristics of a surfactant-added LiBr-$H_2O$ solution flowing over a single horizontal tube were examined experimentally. The parameters considered were surfactant (2-ethyl-1-hexanol) concentration, solution temperature at the top of the tube and absorber pressure. Even with an amount of the surfactant below the solubility limit, heat and mass transfer performances were enhanced tremendously. The Nusselt and Sherwood numbers increased by about 70% and 340%, respectively, when 10 ppm of the surfactant was added. However, an excess amount of the surfactant in the solution did not bring a further enhancement. The absorption performance deteriorated when the non-condensable gases were extracted from the system (by a vacuum pump) since the vaporized surfactant was also extracted during the process. Therefore, it is desirable to add a sufficient amount of the surfactant (more than 10 ppm) to maintain high performance of absorption.

Study on the pressure drop of ternary refrigerant R-407c during condensation inside horizontal micro-fin tubes (3성분 혼합냉매 R-407c의 수평 마이크로핀관내 응축압력강하에 관한 연구)

  • 정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.210-218
    • /
    • 1998
  • Experimental results for forced convection condensationof Refrigerant-22 and ternary Refrigerant-407c(HFC-32/125/134a 23/25/52 wt%) considered as a substitute R-22 inside horizontal micor-fin tubes are presented. The test section was horizontal double-tubed counterflow condenser with a length 4000 mm micro-fin tube having 9.53 mm OD., 0.2 mm fin height and 60 fins. The refrigerants R-22 and R-407c were cooled by a coolant circulated in a surrounding annulus. The range of parameters of mass velocity was varied from 102.1 to 301.0kg/($\textrm{m}^{2}.s$) with inlet quality 1.0. Both refrigerant R-22 and its alternative refrigerant R-407c were tested within the same range of parameters. At the given experimental conditions for R-22 and R-407c the pressure drops for R-407c were considerably higher than those for R-22 at micro-fin tubes. Over the mass velocity range tested the PF(penalty factor)was lower than the increasing ratio of heat transfer area by fins. Based on the data correlation was proposed for predicting the frictional pressure drops for R-22 and R-407c for a duration of condensation inside a horizontal micro-fin tube.

  • PDF

An Experimental Study on Flow and Heat / Mass Transfer Characteristics of $LiBr-H_2O$ Solution Flowing over a Cooled Horizontal Tube (수평 냉각관 외부를 흘러내리는 $LiBr-H_2O$ 수용액의 유동 및 열/물질 전달 특성에 관한 실험적 연구)

  • Seal, Sin-Su;Lee, Sang-Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1085-1096
    • /
    • 2000
  • An experimental study was performed to examine the heat and mass transfer characteristics of $LiBr-H_2O$ solution flowing over a single horizontal tube with the water vapor absorption. Effects of the flow rate and the temperature of the solution at the top of the tube, the absorber pressure and the drainage pattern were considered. The absorption rate depends highly on the absorber pressure at the low flow rate condition while on the solution inlet temperature at the high flow rate condition. Also, when the flow rate is low, the absorption performance with the sheet flow drainage appeared to be higher than that with the dripping/jet drainage. However, at the high flow rate condition, the case became reversed. The liquid film became wavy with the higher absorption rate. The waves were more probable to form with the lower flow rate and temperature of the solution, and with the higher absorber pressure.

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes (수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF

Absorption of Water Vapor into an Absorbing Binary Liquid Film Falling over a Horizontal Tube Bank (수평원관군상(水平圓管群上)의 이원흡수용액유동(二元吸收溶液流動)에 의(依)한 전달흡수특성(傳達吸收特性))

  • Kim, S.;Kim, Y.I.;Seo, S.C.;Hwang, D.K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.583-589
    • /
    • 1988
  • Condensation of water vapor into an absorbent liquid of LiBr-water solution falling over a bank of water cooled horizontal tubes was investigated theoretically. The governing conservation equation for a re-defined physical transport phenomena were solved numerically using a finite difference method. Raw parameters were used in this study, since reliable experimental data is required prior to a dimensionless parametric study. The average values of wall heat transfer coefficient and interfacial absorption rate were defined to see the system performance. Other parameters include tube diameter, streamwise coordinate (and number of tubes in row), mass flow rate, and the wall temperature. The effects of these quantities on the absorption processes and suggestions for a rational system design have been presented.

  • PDF

Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant (대체냉매의 2중관 응축기 열 및 물질전달과 성능평가)

  • 이상무;박병덕;소산번
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

Flow Condensation Heat Transfer Characteristic of R245fa in a Horizontal Plain Tube (수평 평활관내 R245fa의 흐름 응축 열전달 특성)

  • Park, Hyun-Shin;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2008
  • Flow condensation heat transfer coefficients(HTCs) of R123 and R245fa are measured in a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 9.52 mm outside diameter and 530 mm length. The refrigerant is cooled by passing cold water through an annulus surrounding the test section. Tests are performed at a fixed saturation temperature of $50\;{\pm}\;0.2\;^{\circ}C$ with mass fluxes of 50, 100, $150\;kg/m^2s$ and heat flux of $7.3{\sim}7.7\;kW/m^2$. Heat transfer data are obtained in the vapor quality range of $10{\sim}90%$. Test results show that the flow condensation HTCs of R245fa are overall 7.9% higher than those of R123 at all mass fluxes. The pressure drop of R245fa is smaller than that of R123 at the same heat flux. In conclusion, R245fa is a good candidate to replace ozone depleting R123 currently used in chillers from the view point heat transfer and environmental properties.