• Title/Summary/Keyword: Cooled Condition

Search Result 277, Processing Time 0.026 seconds

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Basic Study on Sub-cooling System using Ice storage tank (빙축열조를 이용한 냉매과냉각 시스템 기초연구)

  • Lee, Eun-Ji;Lee, Dong-Won;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.990-995
    • /
    • 2009
  • Experimental basic study was performed to understand the characteristics of sub-cooled refrigerant using a cold heat storage system. This system was made up general vapor-compression refrigeration cycle added sub-cooler and ice storage tank. The purpose of this study are to application use of cold-heat storage systems multiplicity of fields and to understand of sub-cooling system. At the condition using ice storage system, the ice making process was operated during night time by electric power. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. Comparing the result at general operation with the operation using sub-cooling system. This study showed the effects of the sub-cooled degree. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, and the compressor consume power was a little decreased. Thus the COP was also increased owing to the sub-cooling of refrigerant.

  • PDF

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

Thermal-hydraulic study of air-cooled passive decay heat removal system for APR+ under extended station blackout

  • Kim, Do Yun;NO, Hee Cheon;Yoon, Ho Joon;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.60-72
    • /
    • 2019
  • The air-cooled passive decay heat removal system (APDHR) was proposed to provide the ultimate heat sink for non-LOCA accidents. The APDHR is a modified one of Passive Auxiliary Feed-water system (PAFS) installed in APR+. The PAFS has a heat exchanger in the Passive Condensate Cooling Tank (PCCT) and can remove decay heat for 8 h. After that, the heat transfer rate through the PAFS drastically decreases because the heat transfer condition changes from water to air. The APDHR with a vertical heat exchanger in PCCT will be able to remove the decay heat by air if it has sufficient natural convection in PCCT. We conducted the thermal-hydraulic simulation by the MARS code to investigate the behavior of the APR + selected as a reference plant for the simulation. The simulation contains two phases based on water depletion: the early phase and the late phase. In the early phase, the volume of water in PCCT was determined to avoid the water depletion in three days after shutdown. In the late phase, when the number of the HXs is greater than 4089 per PCCT, the MARS simulation confirmed the long-term cooling by air is possible under extended Station Blackout (SBO).

Cooled radiofrequency ablation of genicular nerves for knee osteoarthritis

  • Myong-Hwan Karm;Hyun-Jung Kwon;Chan-Sik Kim;Doo-Hwan Kim;Jin-Woo Shin;Seong-Soo Choi
    • The Korean Journal of Pain
    • /
    • v.37 no.1
    • /
    • pp.13-25
    • /
    • 2024
  • Knee osteoarthritis (OA) is a prevalent and debilitating musculoskeletal condition that significantly affects the quality of life of millions of individuals worldwide. In recent years, cooled radiofrequency ablation (CRFA) has become a viable treatment option for knee OA. This review thoroughly evaluated the existing literature on CRFA therapy for knee OA. It delved into the mechanisms behind CRFA, evaluated its clinical efficacy, and investigated potential avenues for future research and application. The insights gained from this review are crucial for healthcare professionals, researchers, and policymakers, offering an updated perspective on CRFA's role as a viable therapeutic option for knee OA.

Magnetic Properties of $GdBa_2Cu_3O_{7-y}$ Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process (종자 결정 성장법으로 제조된 $GdBa_2Cu_3O_{7-y}$ 벌크 초전도체의 자기적 특성)

  • Kim, K.M.;Park, S.D.;Jun, B.H.;Ko, T.K.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed $GdBa_2Cu_3O_{7-y}$ (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature ($T_{max}$), a temperature for crystal growth ($T_G$) and a cooling rate ($R_G$) through a peritectic temperature ($T_P$) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature ($T_c$) and critical current density ($J_c$) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The $T_c$ of a TSMG processed Gd123 sample was 92.5 K and the $J_c$ at 77 K and 0 T was approximately $50kA/cm^2$. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

KSR-III 액체 로켓엔진 설계점 연소시험

  • Kim, Seung-Han;Cho, Gyu-Sik;Han, Yeoung-Min;Seo, Seong-Hyun;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.164-170
    • /
    • 2003
  • KSR-III engine with film-cooled baffle was tested. The purpose of this test is to verify the effect of ablative baffle on avoiding combustion instability which occurred in the acoustic cavity case. The engine had expansion ratio of 5.04 and the test condition was design condition(oxidizer mass flow rate 42.04, and fuel 17.95 kg/s). In the test, combustion instability did not occur. So, the effect of film-cooled baffle on avoiding combustion instability was verified.

  • PDF

Numerical Study of Natural Convection in Porous Media Bounded by Short Vertical Annulus (단형 수직환형 다공성 물질에 있어서의 자연 대류에 대한 수치해석)

  • 윤종혁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.979-990
    • /
    • 1989
  • Natural convection heat transfer has been investigated numerically in the vertical annulus filled withsaturated porous material for the aspect ratio less than unity. The inner wall of the annulus is exposed to constant heat flux condition and the outer wall is cooled to keep isothermal condition. The upper and the lower horizontal wall are assumed to be insulated. Under conditions ranging 50 .leq. Ra .leq. 10000, 1 .leq. RD .leq. 12, the characteristics of flow and heat transfer have been investigated. The results show that average Nusselt numbers increase when the radius ratio increases and the multicellular flows are not detected under the present conditions. Isothermal lines are plotted within the porous media. Temperatures of the inner wall with constant heat flux conditions and the local heat flux rate of the cooled outer wall with constant temperature are also obtained.

Effect of Electrical Field on the Phase Transformation of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals (단결정 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 의 상전이에 미치는 전장의 영향)

  • Lee, Eun-Gu
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.329-333
    • /
    • 2013
  • The structural phase transformations of $0.7Pb(Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)${\rightarrow}$tetragonal (T)${\rightarrow}$rhombohedral (R) phase was observed in zero-field-cooled conditions; and a $C{\rightarrow}T{\rightarrow}$monoclinic $(M_C){\rightarrow}$ monoclinic ($M_A$) phase was observed in the field-cooled conditions. The transformation of T to $M_A$ phase was realized through an intermediate $M_C$ phase. The results also represent conclusive and direct evidence of a $M_C$ to $M_A$ phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a $R{\rightarrow}M_A{\rightarrow}M_C{\rightarrow}T$ phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the $M_A$ phase was stable at room temperature. With increasing the field, the transformation temperature from T to $M_C$ and from $M_C$ to $M_A$ phase decreased, and the phase stability ranges of both T and $M_C$ phases increased. Upon removal of the field, the phase transformation from R to $M_A$ phase was irreversible, but from $M_A$ to $M_C$ was reversible, which means that $M_A$ is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.

Study on the Conjugate Heat Transfer Analysis Methodology of Thermal Barrier Coating on the Internal Cooled Nozzle (내부냉각노즐의 열차폐코팅을 위한 복합열전달 해석기법 연구)

  • Kim, Inkyom;Kim, Jinuk;Rhee, Dong-Ho;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.38-45
    • /
    • 2015
  • In this study, two computational methodologies were compared to consider an effective conjugate heat transfer analysis technique for the cooled vane with thermal barrier coating. The first one is the physical modeling method of the TBC layer on the vane surface, which means solid volume of the TBC on the vane surface. The second one is the numerical modeling method of the TBC layer by putting the heat resistance interface condition on the surface between the fluid and solid domains, which means no physical layer on the vane surface. For those two methodologies, conjugate heat transfer analyses were conducted for the cooled vane with TBC layer having various thickness from 0.1 mm to 0.3 mm. Static pressure distributions for two cases show quite similar patterns in the overall region while the physical modeling shows quite a little difference around the throat area. Thermal analyses indicated that the metal temperature distributions are quite similar for both methods. The results show that the numerical modeling method can reduce the computational resources significantly and is quite suitable method to evaluate the overall performance of TBC even though it does not reflect the exact geometry and flow field characteristics on the vane surface.