• Title/Summary/Keyword: Cooled Condition

Search Result 279, Processing Time 0.021 seconds

A Study on Two Dimensional Phase Change Problem (상변화 축열계의 비정상 해석)

  • Won, Sung-Pil;Ro, Sung-Tack
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.1
    • /
    • pp.12-21
    • /
    • 1981
  • The Enthalpy Model was verified in order to analyze two- dimensional phase change problems. By using the Enthalpy Model, interface locations, frozen fraction rates, heat flux distribution rut cooled surfaces, and surface-integrated heat flux were purely numerically calculated in rectangular thermal storage units, whose initial condition was saturated liquid and phase change material was cooled on its boundaries by convective heat transfer. The calculations were performed for various Stefan numbers and Biot numbers. The effect on those dimensionless numbers were explained.

  • PDF

Water-Simulant Facility Installation for the Sodium-Cooled Fast Reactor KALIMER-600 and Global Flow Measurement (소듐냉각고속로 KALIMER-600 축소 물모의 열유동 가시화 실험장치 구축 및 거시 유동장 특성 측정)

  • Cha, Jae-Eun;Kim, Seong-O
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.54-62
    • /
    • 2011
  • KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.

The Production of Cloned Embryos with Cooled and Frozen-Thawed Adult Ear Cells in Bovine

  • Hong, Seung-Bum;Uhm, Sang-Jun;Lee, Hae-Young;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.218-218
    • /
    • 2004
  • This study was designed to investigate the in vitro developmental ability and apoptosis of embryos nuclear transferred (NT) with frozen-thawed (FT) or cooled donor cells in bovine. Cultured adult bovine ear cells were used as donor cells at confluent condition (CC), after cooling at 4℃ for 48 hour, or after FT. (omitted)

  • PDF

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

Approximate Solution of Absorption Process in an Air-Cooled Vertical Plate Absorber (공냉식 수직평판형 흡수기의 흡수과정에 대한 근사해법)

  • Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.453-462
    • /
    • 1994
  • An unsteady quasi one-dimensional model of momentum, heat and mass transfer in a falling film of a vertical plate absorber which is cooled by air was developed using the integral method. Energy conservation of the absorber wall is considered in the model. The model can predict absorption rate, film thickness and mean velocity as well as concentration and temperature profiles. Predictions of steady state temperature and concentration profiles for LiBr/water system for constant wall temperature condition are in good agreement with the two-dimensional finite difference method solutions. Effects of operating conditions, such as convective heat transfer coefficient between the cooling air and the absorber wall, cooling air temperature and film thickness at inlet, on absorption rate of water vapor into LiBr/water solution were shown.

  • PDF

Ice Marking Pattern of Flowing Organic Water Solution in a Horizontal Cooled Tube (수평냉각관내에서 유동하는 유기수용액의 제빙형태)

  • 박기원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.52-57
    • /
    • 2000
  • Recently large capacity of electric equipment and increasing in atomic power generation are shown. One of the reason is shortage of the electric power supply for air conditioning load during summer. And every consumer is concerning about economical refrigeration and air conditioning system to decreases electric power consumption and decrease in global warming. For these necessities, ice making thermal storage system is required. Therefore, in this paper, the possibility of continuous slurry ice making using flowing organic water solution in cooled circular tube has been investigated. The experiments was carried out under some parameters of concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in tube, As a result, four types of operating conditions in the pipe, that was supercooling, continuous ice making, intermittent ice making and ice blockage, were classified . And it was found that the critical condition for continuous ice making was acquired as a function of these experimental parameters.

  • PDF

Super-cooled State Cloud Generation System Development for T-50 Supersonic Jet Trainer Icing Test (T-50 고등훈련기 빙결시험을 위한 과냉각구름 생성시스템 개발)

  • Lee, Cheol;Jeon, Cheol-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.580-586
    • /
    • 2008
  • Icing cloud generation system was developed to perform the in-flight icing simulation test for T-50 Supersonic Jet Trainer on the ground. The developed system successfully generated the almost natural icing cloud in the super-cooled state (liquid state) below freezing point and with the required LWC (Liquid Water Content). For full-scale aircraft icing test, an icing scaling method was adopted due to the limitation of wind generation speed with open-circuit type blower and its applicability was experimentally verified. Under the required in-flight icing condition based on the icing scaling method, T-50 aircraft subsystems were successfully operated and functionally checked.

Measurement of Flow Field in the Pebble Bed Type High Temperature Gas-cooled Reactor (페블 베드 타입 고온 가스 냉각 원자로 내부 유동장 측정)

  • Lee, Sa-Ya;Lee, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2088-2093
    • /
    • 2008
  • In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gas-cooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method.

  • PDF

Effect of Improved Cooling System on Reproduction and Lactation in Dairy Cows under Tropical Conditions

  • Suadsong, S.;Suwimonteerabutr, J.;Virakul, P.;Chanpongsang, S.;Kunavongkrit, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.555-560
    • /
    • 2008
  • The effects of utilizing evaporative cooling system equipped with tunnel ventilation on postpartum ovarian activities, energy balance and milk production of early lactating dairy cows under hot and humid climates were studied from parturition to 22 wk postpartum. Thirty-four crossbred Holstein-Friesian (93.75% HF$\times$.25% Bos indicus) primiparous cows were randomly assigned to one of two groups. Cooled cows (n = 17; treatment) were housed in the tunnel ventilated barn equipped with evaporative cooling system and uncooled (n = 17; control) were housed in the naturally ventilated barn without supplemental cooling system. Cooled cows had greater (p<0.05) dry matter intake and milk production than uncooled cows. Days to the energy balance (EB) nadir did not differ between groups. However, days to equilibrium EB for uncooled cows was longer (p<0.05) than for cooled cows. There was no significant difference in postpartum anovular condition between cooled and uncooled cows. The interval from parturition to first postpartum ovulation did not differ between groups ($31.4{\pm}4.3$ and $26.1{\pm}3.6$ day, respectively). These results suggest that the evaporative cooling and tunnel ventilation has the potential to decrease the severity of heat stress and improve both milk production and metabolic efficiency during early lactation without affecting reproductive function in dairy cows under hot and humid climates.

A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air (공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구)

  • 김선창;오명도;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.