• Title/Summary/Keyword: Coolant Flow Channel

Search Result 80, Processing Time 0.028 seconds

Optimum design of injection molding cooling system via boundary element method (경계요소법을 이용한 사출성형금형 냉각시스템의 최적설계)

  • Park, Seong-Jin;Kwon, Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1773-1785
    • /
    • 1997
  • The cooling stage is the very critical and most time consuming stage of the injection molding process, thus it cleary affects both the productivity and the part quality. Even through there are several commercialized package programs available in the injection molding industry to analyze the cooling performance of the injection molding coling stage, optimization of the cooling system has npt yet been accomplished in the literature due to the difficulty in the sensitivity analysis. However, it would be greatly desirable for the mold cooling system designers to have a computer aided design system for the cooling stage. With this in mind, the present study has successfully developed an interated computer aided design system for the injection molding cooling system. The CAD system utilizes the sensitivity analysis via a Boundary Element Method, which we recently developed, and the well-known CONMIN alforuthm as an optimization technique to minimize a weighted combination (objective function) of the temperature non-uniformity over the part surface and the cooling time related to the productivity with side constranits for the design reality. In the proposed objective function , the weighting parameter between the temperature non-uniiformity abd the cooling time can be adjusted according to user's interest. In this cooling system optimization, various design variable are considered as follows : (i) (design variables related to processing conditions) inlet coolant bulk temperature and volumetric flow rate of each cooling channel, and (ii) (design variables related to mold cooling system design) radius and location of each cooling channel. For this optimum design problem, three different radius and location of each cooling channel. For this optimum design problem, three different strategies are suffested based upon the nature of design variables. Three sample problems were successfully solved to demonstrated the efficiency and the usefulness of the CAD system.

A REVIEW OF CANDU FEEDER WALL THINNING

  • Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.568-575
    • /
    • 2010
  • Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Gray loc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low.

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants (중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석)

  • Seon Oh Yu;Kyung Won Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

Influences of Viscous Losses and End Effects on Liquid Metal Flow in Electromagnetic Pumps

  • Kim, Hee-Reyoung;Seo, Joon-Ho;Hong, Sang-Hee;Suwon Cho;Nam, Ho-Yun;Man Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.233-240
    • /
    • 1996
  • Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current ( u x B ) generated by the liquid metal movement across the magnetic field rather than the one (E) produced by externally applied magnetic fields by three-phase winding currents. It is concluded that since the influences of the end effects in addition to viscous losses are extensive particularly in high-velocity operations of the EM pumps, it is necessary to find ways to suppress them, such as proper selection of the pump parameters and compensation of the end effects.

  • PDF

Thermal managing effects by cooling channels on performance of a PEMFC (냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구)

  • Sohn, Young-Jun;Kim, Min-Jin;Park, Gu-Gon;Kim, Kyoung-Youn;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

DNBR Sensitivities to Variations in PWR Operating Parameters (가압경수로의 운전변수 변화에 대한 DNBR의 민감도)

  • Hyun Koon Kim;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.236-247
    • /
    • 1983
  • Analyzed are the the DNBR(Departure from Nucleate Boiling Ratio) sensitivities to variations in various PWR operating parameters utilizing the Korea Nuclear Unit 1(KNU-1) design and operating data. Studied parameters in the analysis are core power level, system pressure, core inlet flow rate, core inlet temperature, enthalpy rise hot channel factor, and axial power peaking factor and axial offset. The calculations are performed using the steady state and transient thermal-hydraulics computer program, COBRA-IV-K, which is the revised version of COBRA-IV-i that has been adapted, partially modified and verified at KAERI. A reference case is established based on the design and operating condition of the KNU-1 reactor core, and this provides a basis for the subsequent sensitivity analysis. From the calculation results it is concluded that the most sensitive parameter in the DNBR thermal design is the coolant core inlet temperature while the axial power peaking factor is the least sensitive.

  • PDF

LOCA Analysis and Development of a Simple Computer Code for Refill-Phase Analysis (냉각재 상실사고 분석 및 재충진 단계해석용 전산코드 개발)

  • Ree, Hee-Do;Park, Goon-Cherl;Kim, Hyo-Jung;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.200-208
    • /
    • 1986
  • The loss of coolant accident based on a double-ended cold leg break is analyzed with the discharge coefficient (Ca) of 0.4. This analysis covers the whole transient period from the start of depressurization to the complete refilling of the core by using RELAP4/MOD6-EM and RELAP4/ MOD6-HOT CHANNEL for the system thermal-hydraulics and the fuel performance during the blowdown phase respectively, and RELAP4/MOD6-FLOOD and TOODEE2 during the reflood phase. A simple analytical method has been developed to account for the lower plenum filling by approximating steam-water countercurrent flows and superheated wall effects at the downcomer during the refill period. Based on the informations. at the time of EOB (end-of-bypass), the refill duration time and the initial reflooding temperature were estimated and compared with the results from the RELAP4/MOD6, resulting in a good agreement. In addition, some parametric studies on the EOB were performed. The form loss coefficient between upper head and upper downcomer was found to be sensitive to the occurrence of the spurious EOB. Appropriate form loss coefficients should be taken into account to avoid the flow oscillations at the downcomer. The analyses with the six and three volume core nodalizations, respectively, show much similar trends in the system thermal-hydraulic performance, but the former case is recommended to obtain good results.

  • PDF