• 제목/요약/키워드: Coolant Control

검색결과 214건 처리시간 0.024초

적외선 윈도우 냉각장치 유로 설계 (A Flow Channel Design on IR Window Cooling Device)

  • 박연정
    • 한국항공우주학회지
    • /
    • 제39권6호
    • /
    • pp.559-566
    • /
    • 2011
  • 본 연구에서는 적외선 윈도우의 냉각을 위해 포펫 밸브와 방사형 오리피스로 구성된 냉각장치 유로를 설계하였다. 필요한 냉각제의 양은 운용조건에 따라 달라지므로 포펫 행정거리에 따른 유동장의 유량과 윈도우 전후단 압력 변화를 유동해석을 통해 예측하고 실험을 통해 이를 확인하였다. 설계된 포펫과 방사형 오리피스 유로는 윈도우 냉각에 필요한 유량을 공급하며 윈도우 구조 강도를 만족하도록 내부 압력을 낮추고 적외선 이미지 신호의 왜곡이 없도록 아음속으로 유지하여 요구 조건을 충족시켰다. 실험으로 측정된 유량을 이용하여 윈도우에서의 송출계수와 2차원 해석결과 사이의 보정계수를 확인하였으며 이를 냉각장치의 유량제어에 사용하였다.

Development of a System Analysis Code, SSC-K, for Inherent Safety Evaluation of The Korea Advanced Liquid Metal Reactor

  • Kwon, Young-Min;Lee, Yong-Bum;Chang, Won-Pyo;Dohee Hahn;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.209-224
    • /
    • 2001
  • The SSC-K system analysis code is under development at the Korea Atomic Energy Research Institute (KAERI) as a part of the KALIMER project. The SSC-K code is being used as the principal tool for analyzing a variety of off-normal conditions or accidents of the preliminary KALIMER design. The SSC-K code features a multiple-channel core representation coupled with a point kinetics model with reactivity feedback. It provides a detailed, one-dimensional thermal-hydraulic simulation of the primary and secondary sodium coolant circuits, as well as the balance-of-plant steam/water circuit. Recently a two-dimensional hot pool model was incorporated into SSC-K for analysis of thermal stratification phenomena in the hot pool. In addition, SSC-K contains detailed models for the passive decay heat removal system and a generalized plant control system. The SSC-K code has also been applied to the computational engine for an interactive simulation of the KALIMER plant. This paper presents an overview of the recent activities concerned with SSC-K code model development This paper focuses on both descriptions of the newly adopted thermal hydraulic and neutronic models, and applications to KALIMER analyses for typical anticipated transients without scram.

  • PDF

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

차량용 CNG 레귤레이터의 성능특성에 관한 연구 (A Study on Performance Characteristics for a CNG Regulators of Automotive Vehicle)

  • 김창기;박철웅
    • 한국가스학회지
    • /
    • 제11권4호
    • /
    • pp.12-16
    • /
    • 2007
  • 천연가스 자동차에 탑재되어 있는 연료압력 레귤레이터는 연료분사시스템의 압력을 일정하게 유지하는 역할을 한다. 연료압력의 정확한 제어는 천연가스 자동차가 가지고 있는 높은 효율성과 청정성을 십분 활용하기 위해서 반드시 필요한 사항이다. 본 연구에서는 천연가스 레귤레이터의 성능을 정확하게 평가할 수 있는 고압실험장치를 구축하였으며, 이 장치를 이용하여 두 가지 방식의 천연가스 레귤레이터를 평가하고 상호 비교를 하였다. 레귤레이터 밸브시스템의 설계에 따라 여러 가지 레귤레이터 성능 특성 중 동적응답과 Creep특성이 영향을 많이 받는 것으로 나타났으며, 레귤레이터 입구 압력이 높을 경우 출구 가스의 온도가 급격히 감소하는 것으로 나타남으로써 아이싱문제를 효과적으로 방지할 수 있는 방안이 마련되어야 함을 확인할 수 있었다.

  • PDF

Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications

  • Konys, J.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.314-319
    • /
    • 2016
  • Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.

500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구 (A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구 (Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.

Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

  • Kim, Hun-Hee;Kim, Hak-Joon;Song, Sung-Jin;Kim, Kyung-Cho;Kim, Yong-Buem
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.228-235
    • /
    • 2016
  • Flaws at dissimilar metal welds (DMWs), such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM), Bottom Mounted Instrumentation (BMI) etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC) in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM) simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션 (Computer Simulation of an Automotive Engine Cooling System)

  • 원성필;윤종갑
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

Superheated Water-Cooled Small Modular Underwater Reactor Concept

  • Shirvan, Koroush;Kazimi, Mujid
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1338-1348
    • /
    • 2016
  • A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at $500^{\circ}C$ to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.