• Title/Summary/Keyword: Cool-down

Search Result 267, Processing Time 0.026 seconds

Development of mLHP by using Various Size of Wick (다양한 크기의 윅(wick)을 이용한 mLHP의 개발)

  • Ha, Jeong-Seok;Choi, Young-Don;Ahn, Deuk-Kuen
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.175-180
    • /
    • 2008
  • This paper is dedicated to the development of cooling devices such as mLHP with Fan-Fin system limited by noise and vibration. As we know, Heat pipe has the limitation of cooling capability to cool down the electronics. It is bounded by capillary and thermal limitation but heat load that it has to deal with is increasing. Especially Today's electronic technology has a tendency to integrate lots of function into the small piece of a processor like Dual core having 35W heat load for mobile and desktop computer respectively. There is an optimum operating condition of temperature, below $70^{\circ}C$, during the maximum heat load, 35W. There is the motivation needed to develop the new type of cooling devices and we can discuss about the new challenge beyond heat pipe.

  • PDF

Study on the Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기 연구)

  • Choi, Bong-Su;Hong, Hi-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.447-454
    • /
    • 2008
  • The regenerative evaporative cooler(REC) is to cool a stream of air using evaporative cooling effect without an increase in the humidity ratio. In the regenerative evaporative cooler, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature. Besides the cooling performance, for practical application of the regenerative evaporative cooler, the compactness of the system is also a very important factor to be considered. In this respect, three different configurations, i.e., the flat plate type, the corrugated plate type, and the finned channel type are investigated and compared for the most compact configuration. The optimal structure of each configuration is obtained individually to minimize the volume for a given effectiveness within a limit of the pressure drop. Comparing the three optimal structures, the finned channel type is found to give the most compact structure among the considered configurations. The volume of the regenerative cooler can be reduced to 1/8 by adopting the finned channel type as compared to that of the flat plate type.

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Correlation of single leg vertical jump, single leg hop, and single leg squat distances in healthy persons

  • Shin, Seung-Ho;Woo, Hyunjae
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2013
  • Objective: To determine the correlation among three functional tests: single leg vertical jump (SLVJ), single leg hop for distance (SLHD), and single leg squat (SLSQ). Design: Cross sectional study. Methods: Twenty healthy men (n=10) and women (n=10) with no history of lower extremity dysfucntion participated in this study and performed in university research laboratory. The procedures consisted of a general warm-up, a task-specific warm-up, actual testing, and a cool down. All participants performed the three tests in random order. Each test was performed three times for the dominant and non-dominant lower extremity (LE). SLVJ, SLHD, SLSQ were measured using a standard tape measure. Results: Statistically significant difference was presented between dominant LE and non-dominant LE in each function test (p<0.05). The strongest correlation was between SLVJ and SLSQ, 0.939 and 0.883 for dominant and non-dominant LE, respectively (p<0.05). The weakest correlation was between SLVJ and SLHD, 0.713 for dominant (p<0.05) and between SLSQ and SLHD, 0.739 for non-dominant (p<0.05). Conclusions: There is a strong correlation between SLVJ and SLSQ, suggesting that each test measures similar constructs of function and can be substitutive, while weak correlation between SLSQ and SLHD suggest these two tests do not measure the same functional components and could be paired as outcome measures for the clinical assessment of LE function. It will provide physical therapist with scientific evidence for effective test combination of LE function assessment in clinical practice.

  • PDF

Thermal load analysis in an incompressible linear visco-elastic cylinder bonded to an elastic shell (非壓縮 粘彈性 圓筒體의 熱荷重 解析)

  • 이영신;최용규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 1987
  • A linear thermoviscoelastic material model, whose basis is on incremental constitutive equation that takes complete strain and temperature histories into account, is derived and computerized in the finite element code. The thermoviscoelastic F.E.M. code which is intended primarily to analyze the cylinder model during the cool-down period, embodies the assumption of linearly elastic bulk and visco-elastic shear responses, thermo-rheologically simple response to temperature change and isotropic thermal expansion. The verification of computer program is accomplished by first testing it against a closed form solution of A.M. Freudenthal & M. Shinozuka's. The stress and strain analyses of five cylindrical models are presented and compared with experimental results. Analytical results are good agreement with experimental results. Margins of safety are evaluated and its allowable ranges are presented.

The Effect of Lower Extremity Strengthening Exercise Using Sliding Stander on Balance and Spasticity in Chronic Stroke: A Randomized Clinical Trial

  • Mun, Byeong Mu;Park, Jin;Kim, Tae Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.311-316
    • /
    • 2019
  • Purpose: Generally, patients with stroke present with decreased balance and increased spasticity following weakness of the paralyzed muscles. Muscle weakness caused by stroke has two causes. This is caused by a decrease in motor output and an adaptive muscle change, resulting in muscle weakness and muscle paralysis. The purpose of this study was to investigate the effect of strengthening exercise on balance and spasticity in chronic stroke patients and to suggest the basis of clinical treatment. Methods: Twenty subjects were divided into two groups: a lower-extremity strengthening group (experimental group) and a general physical therapy group (control group). The sliding stander equipment was used for the experimental group and a regimen of warm-up exercise, the main exercise routine, and cool-down exercise were used for the muscle strengthening exercise program. Balance and spasticity were measured before and after the training period. Balance ability was measured by the Berg balance scale, the Timed up and Go test and the weight distribution of the paralyzed muscles by the Spacebalance 3D. Spasticity was measured by the Biodex system. Results: After the training periods, the experimental group showed a significant improvement in BBS, weight distribution of the paralyzed muscles, and decreased spasticity when compared to the control group (p<0.05). Conclusion: This study supported the hypothesis that lower-extremity strengthening exercise improves the balance and decreases the spasticity of stroke patients. If it is combined with conventional neurologic physiotherapy, it would be effective rehabilitation for stroke patients.

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Phenomena Identification and Ranking Table for the APR-1400 Main Steam Line Break

  • Song, J.H.;Chung, B.D.;Jeong, J.J.;Baek, W.P.;Lee, S.Y.;Choi, C.J.;Lee, C.S.;Lee, S.J.;Um, K.S.;Kim, H.G.;Bang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.388-402
    • /
    • 2004
  • A phenomena identification and ranking table(PIRT) was developed for a main steam line break (MSLB) event for the Advanced Power Reactor-1400 (APR-1400). The selectee event was a double-ended steam line break at full power, with the reactor coolant pump running. The developmental panel selected the fuel performance as the primary safety criterion during the ranking process. The plant design data, the results of the APR-1400 safety analysis, and the results of an additional best-estimate analysis by the MARS computer code were used in the development of the PIRT. The period of the transient was composed of three phases: pre-trip, rapid cool-down, and safety injection. Based on the relative importance to the primary evaluation criterion, the ranking of each system, component, and phenomenon/process was performed for each time phase. Finally, the knowledge-level for each important process for certain components was ranked in terms of existing knowledge. The PIRT can be used as a guide for planning cost-effective experimental programs and for code development efforts, especially for the quantification of those processes and/or phenomena that are highly important, but not well understood.

Design of muon production target system for the RAON μSR facility in Korea

  • Jeong, Jae Young;Kim, Jae Chang;Kim, Yonghyun;Pak, Kihong;Kim, Kyungmin;Park, Junesic;Son, Jaebum;Kim, Yong Kyun;Lee, Wonjun;Lee, Ju Hahn
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2909-2917
    • /
    • 2021
  • Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

A Study on the Characteristics & Fire Hazard of Electric Range (전기레인지의 특성과 화재 위험성에 관한 연구)

  • Lee, Jung-Il;Ha, Kag-Cheon;Kim, Ji-Myong
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.380-390
    • /
    • 2019
  • Purpose: Recently, in addition to increase in the use of electric ranges, fires have also been increasing. Method: To find out the fire risk of induction and highlights range, looked at the structure and operation methods. Combustion tests, heat transfer tests, and ignition tests were performed on both types. Results: The highlight electric range burned the towel two minutes later, takes about 25 minutes for the residual heat to cool down after cooking, and the energy of the red color disappeared in three to four minutes and no sparks were seen. Conclusion: Experiments have shown that burn and fire hazards exist, especially if there is cracks in the top, there is a risk of fire and explosion.