• Title/Summary/Keyword: Cool Water

Search Result 222, Processing Time 0.027 seconds

Study on Reliability of Water Absorption Diagnosis through Precise Water Absorption Test

  • Kim, Hee-Soo;Bae, Yong-Chae;Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.772-777
    • /
    • 2012
  • Accidents caused by water absorption in water-cooled generator stator windings often occur all over the world. The absorption into the insulator of the coolant, which is used to cool down the heat generated by stator windings during operation, leads to the deterioration of dielectric strength, and insulation breakdown. An insulation breakdown may cause not only an enormous economic loss but also a very serious grid accident that would compromise stable supply of electric power. More than 50 % of domestic generators have been in operation for more than 15 years, and water absorption tests performed on 50 water-cooled generator stator windings during a five-year planned preventive maintenance period beginning in 2006 identified water absorption problems in 10 of them, all of which required repair. Because the existing water absorption test detects this problem by utilizing stochastic methods after measuring the capacitances at the final positions of insulation breakdown, its accuracy is limited. This study demonstrates that water absorption can be more accurately diagnosed by utilizing method along with a more precise one.

Effect of Temperature and Water Content of Soil on Creeping Bentgrass(Agrostis palustris Huds) Growth (토양의 온도와 수분이 크리핑 벤트그래스(Agrostis palustris Huds) 생육에 미치는 영향)

  • Lim, Seung-Hyun;Jeong, Jun-Ki;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2009
  • The high temperature and water content in soil profile probably affect the physiological disorder especially on cool-season turfgrasses in warm and humid weather of Korean summer. The purpose of this research was to analyze the effect of soil temperature and water content on the growth and stress response of creeping bentgrass(Agrostis palustris Huds.) under a humid and warm temperature. USGA(United State of Golf Association) green profile in laboratory test, Daily temperature changes were tested under a dried sand, 70% water content of field capacity, and saturated condition at $34^{\circ}C$ of the USGA green in lab. In this test, the dried sand reached to $80^{\circ}C$, however, the surface temperature decrease of $10^{\circ}C$ on the saturated condition. In the thermal properties test in field, thermal conductivity, thermal diffusivity, and soil temperature were increased followed by irrigation practise. In the water-deficient condition, the highest soil temperature was reached temporally right after irrigation, however, the excessive soil water content higher than field water holding capacity showed the highest soil temperature after a while. This result indicated that a heat damage to root system was caused from the thermal conductivity of a high surface soil temperature. The excessive irrigation when a high turf surface temperature should occur a negative result on tufgrass growth, moreover, it would be fatal to root growth of creeping bentgrass, especially when associated with a poor draining system on USGA sand green. Overall, this study shows that high soil temperature with water-excessive condition negatively affects on cool-season grass during the summer season, suggesting that excessive irrigation, over 70% field capacity of soil condition, does not help to reduce soil temperature for summer season in Korea. In the study that cool-season grass were treated with different water content of soil, The soil had higher temperature and more water holding capacity when treatment rate of soil conditioner was increased. The best growth at the normal water condition and the worst state of growth at thee water-excessive condition were observed.

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage I. Influence of Cool Water Irrigation on the Degeneration and Differentiation of Rachis Branches and Spikelets, Sterility Ratio and Ripening Ratio of Rice (생식생장기 냉수온이 벼의 Source와 Sink관련형질 및 양분호흡에 미치는 연구 I. 냉수관개가 지경과 영화의 분화 및 퇴화, 불임, 등숙에 미치는 영향)

  • Choi, Su-Il;La, Jong-Seong;So, Jae-Don;Lee, Man-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.359-367
    • /
    • 1985
  • This experiment was conducted to study effect of cold water damage on some growth characters related to source and sink at reproductive growth stage in Jinan (sea level 303m). The cold water irrigation duration had irrigated 4, 8 and 12 days at panicle formation stage and reproduction division stage compared to perennial water irrigation. Cold water irrigation shortened culm length and panicle length and degree of panicle exsertion. The shortening effect appeared great at lower internodes when treated at panicle formation stage but at higher internodes when treated at reduction division stage. Cold water irrigation decreased the number of secondary branches and spikelets per panicle, and increased the number of degenerated spikelets being high degeneration when treated at panicle formation stage. Spikelet sterility and impediment of grain filling were affected by duration of cold water irrigation being great when treated at spikelet primodium differentiation stage and reduction division stage in particular. Grain weight was also reduced. Significant relationship existed between spikelets sterility, grain filling and yield. The degeneration of secondary branches and spikelets correlated with leaf area but spikelet sterility and yield with culm length, panicle length and panicle exsertion.

  • PDF

Evaporation Cooling of a Droplet containing a Surfactant (계면활성제를 첨가한 액적의 증발냉각)

  • Riu, Kap-Jong;Bang, Chang-Hoon;Kim, Hyun-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.424-431
    • /
    • 2003
  • The evaporation cooling phenomenon of a droplet containing a surfactant on a heated surface has been studied experimentally. The two kinds of heater modules made of brass and Teflon$^{TM}$ were tested to investigate the cooling characteristics of droplet. Solutions of water containing Sodium Lauryl Sulfate(0 ppm, 100 ppm, 1000 ppm) were tested in the experiments. The results showed that the contact angle decrease as the concentration of surfactant increases. The tendency did not very with different heated solid materials. As initial temperature of the heated surface becomes high, time averaged heat flux increases and evaporation time decreases with the denser concentration of surfactant. Therefore, water with denser concentration of surfactant could be effective to cool flammable materials. However, the effect of surfactant becomes low as the material temperature is higher than the boiling temperature of water.

Cause Analysis for a Lining Damage in Sea Water System Piping Installed in a Korean Industrial Plant

  • Hwang, K.M.;Park, S.K.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Many Korean industrial plants including nuclear and fossil power plants use seawater as the ultimate heat sink to cool the heat generated by various facilities. Owing to the high corrosivity of seawater, facilities and piping made of metal material in contact with seawater are coated or lined with polymeric materials to avoid direct contact with seawater. However, polymeric materials used as coating and lining have some level of permeability to water and are degraded over time. Korean industrial plants have also experienced a gradual increase in the frequency of damage to pipes in seawater systems due to prolonged operating periods. In the event of a cavitation-like phenomenon, coating or lining inside the piping is likely to be damaged faster than expected. In this paper, the cause of water leakage due to base metal damage caused by the failure of the polyester lining in seawater system piping was assessed and the experience with establishing countermeasures to prevent such damage was described.

The Planning of Micro-climate Control by Complex Types (단지 유형에 따른 도시의 미기후 조절 계획에 관한 연구)

  • Jeong, Juri;Chung, Min Hee
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • Purpose: Temperature in urban areas increase much more than suburban areas and it is called urban heat island (UHI) phenomenon. There are several solutions to control UHI phenomenon such as green roof system, water space construction, and cool roof system. However, application of green roof system and cool roof system to some of the buildings which compose the city has a critical limit. Therefore, in order to diminish the temperature rising and UHI phenomenon due to climate change of the city, it needs to approach from the viewpoint of site or city, rather than the viewpoint of individual buildings. This study is aims at analyzing UHI phenomenon by characteristics of surface materials and suggesting the solutions to reduce UHI phenomenon by types of complex. Method: Literature reviews were conducted to analyze the cause, mitigating plan, and recent trends of UHI phenomenon. For the simulation analysis, the type of complex was classified 3 representative complex. Based on measured reflectivity, simulation about UHI phenomenon was conducted by setting 4 strategies; albedo of roof, road pavement, green roof system, and vegetating around buildings. Result: As the results of simulating the UHI reduction factor by types of complex, it showed that the effect of temperature reduction on the building roof layer is more effective than adjusting the reflectivity of buildings such as green roof system, planting near the buildings in both the detached house complex, apartment complex, and commercial complex.

Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

  • Brearley, Matt B.
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.327-328
    • /
    • 2017
  • Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (${\leq}5$ minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

Fluctuation Characteristic of Temperature and Salinity in Coastal Waters around Jeju Island (제주도 연안 천해역의 수온 · 염분 변동 특성)

  • KO Jun-Cheol;KIM Jun-Teck;KIM Sang-Hyun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.306-316
    • /
    • 2003
  • We conducted a time-series analysis of temperature and salinity of sea water around Jeju Island, Korea. Monthly mean temperature and salinity was influenced by precipitation and weather conditions on Jeju as well as by oceanographic conditions of the open sea such as the Tsushima Warm Current and sea water in coastal areas. Salinity of Jeju coastal waters was the highest in April, and it was always over 34.00 psu with tiny fluctuation between December and June. Due to the effects of the Tsushima Warm Current, Jeju coastal waters maintained high salinity and stability. Low salinity and its large fluctuations during summer were closely associated with the China Coastal Water and precipitation in Jeju. The place of the lowest water temperature was the northeast coasts of Jeju (Gimneong, Hado, Jongdalri). In winter, as warmer water of the Tsushima Warm Current appeared in western area of Jeju dwindled flowing along the northern coasts of Jeju area and becoming cool, the lowest water temperature often appeared locally in Gimnyeong and its vicinitly in summer. The Tsushima Warm Current flows into the east entrance of Jeju Strait, but its influence is weak because of geometry and strong vertical mixing due to fast tidal currents.

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Applied cases of advanced construction & engineering technology at Tower Palace III Project (타워팰리스 III 현장의 첨단 시공 및 엔지니어링 기술 적용사례)

  • Wang In-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.202-213
    • /
    • 2003
  • Tower Palace III project is the highest residential and commercial high-rise complex building in Korea. In order to construct a high-rise building, advanced construction and engineering technology is required. Therefore, with more developed construction and engineering technology based upon accumulated knowledge, construction speed of 13.4 days per floor including finish work was achieved in this project. To achieve this project successfully, three main advanced construction technology were applied: 1) Construction methods for 3-day cycle of structural work and curtain wall, 2) Tact scheduling method for finish work, 3) Management system of material, labor, work, and information. Also, four main engineering technology were applied: 1) New material such as high -flowing concrete and high strength concrete of 800 kgf/cm2, 2) New method such as a pipe-cooling system of a cool water circulating type, 3) Mechanical system such as smart-fan controlling kitchen-ventilation system, 4) Electrical system such as false car system.

  • PDF