• Title/Summary/Keyword: Cooking oil fumes

Search Result 7, Processing Time 0.018 seconds

Effective Local Exhaust Ventilation on Cooking Fumes of Seasoned Meats

  • Lee Byeong Kyu;Ellenbecker Michael J.
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • This study identified the fumes produced from the cooking of the seasoned meats containing various condiments such as garlic, onion, pepper, soy sauce, and sesame oil. Concentrations, at the breathing zone of the cook, of volatile organic compounds (VOCs) and aldehydes included in the cooking fumes of seasoned meats were identified. Many chloro and fluoro-aliphatic hydrocarbons, aromatic hydrocarbons, ketones, and aldehydes, which could be carcinogen suspecting chemicals, were producing from the cooking fumes of the seasoned meats. This study also identified the ventilation efficiencies of the cooking fumes of the six exhaust ventilation systems, which were widely being used in the general apartments, houses, and small-food factories. For a comparison of the ventilation efficiencies of the systems, acetaldehyde was chosen as a marker pollutant and its concentrations at the breathing zone of the cook were identified. The laboratory fume hood showed the best ventilation efficiency of the six ventilation systems studied, and then the lateral hood ventilation and the down draft ventilation followed the laboratory fume hood. Finally, this study identified that both a wall factor nearby pollutant sources and a distance factor between the hood face and pollutant sources should be also considered for an effective local exhaust ventilation system design.

  • PDF

Effective Local Exhaust Ventilation on Cooking Fumes of Seasoned Meats

  • Byeong Kyu Lee;Mic
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • This study identified the fumes produced from the cooking of the seasoned meats containing various condiments such as garlic, onion, pepper, soy sauce, and sesame oil. Concentrations, at the breathing zone of the cook, of volatile organic compounds (VOCs) and aldehydes included in the cooking fumes of seasoned meats were identified. Many chloro- and fluoro-aliphatic hydrocarbons, aromatic hydrocarbons, ketones, and aldehydes, which could be carcinogen suspecting chemicals, were producing from the cooking fumes of the seasoned meats. This study also identified the ventilation efficiencies of the cooking fumes of the six exhaust ventilation systems, which were widely being used in the general apartments, houses, and small-food factories. For a comparison of the ventilation efficiencies of the systems, acetaldehyde was chosen as a marker pollutant and its concentrations at the breathing zone of the cook were identified. The laboratory fume hood showed the best ventilation efficiency of the six ventilation systems studied, and then the lateral hood ventilation and the down draft ventilation followed the laboratory fume hood. Finally, this study identified that both a wall factor nearby pollutant sources and a distance factor between the hood face and pollutant sources should be also considered for an effective local exhaust ventilation system design.

  • PDF

TP63 Gene Polymorphisms, Cooking Oil Fume Exposure and Risk of Lung Adenocarcinoma in Chinese Non-smoking Females

  • Yin, Zhi-Hua;Cui, Zhi-Gang;Ren, Yang-Wu;Su, Meng;Ma, Rui;He, Qin-Cheng;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6519-6522
    • /
    • 2013
  • Background: Genetic polymorphisms of TP63 have been suggested to influence susceptibility to lung adenocarcinoma development in East Asian populations. This study aimed to investigate the relationship between common polymorphisms in the TP63 gene and the risk of lung adenocarcinoma, as well as interactions of the polymorphisms with environmental risk factors in Chinese non-smoking females. Methods: A case-control study of 260 cases and 318 controls was conducted. Data concerning demographic and risk factors were obtained for each subject. The genetic polymorphisms were determined by Taqman real-time PCR and statistical analyses were performed using SPSS software. Results: For 10937405, carriers of the CT genotype or at least one T allele (CT/TT) had lower risks of lung adenocarcinoma compared with the homozygous wild CC genotype in Chinese nonsmoking females (adjusted ORs were 0.68 and 0.69, 95%CIs were 0.48-0.97 and 0.50-0.97, P values were 0.033 and 0.030, respectively). Allele comparison showed that the T allele of rs10937405 was associated with a decreased risk of lung adenocarcinoma with an OR of 0.78 (95%CI=0.60-1.01, P=0.059). Our results showed that exposure to cooking oil fumes was associated with increased risk of lung adenocarcinoma in Chinese nonsmoking females (adjusted OR=1.58, 95%CI=1.11-2.25, P=0.011). However, we did not observe a significant interaction of cooking oil fumes and TP63 polymorphisms. Conclusion: TP63 polymorphism might be a genetic susceptibility factor for lung adenocarcinoma in Chinese non-smoking females, but no significant interaction was found with cooking oil fume exposure.

Role of Household Exposure, Dietary Habits and Glutathione S-Transferases M1, T1 Polymorphisms in Susceptibility to Lung Cancer among Women in Mizoram India

  • Phukan, Rup Kumar;Saikia, Bhaskar Jyoti;Borah, Prasanta Kumar;Zomawia, Eric;Sekhon, Gaganpreet Singh;Mahanta, Jagadish
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3253-3260
    • /
    • 2014
  • Background: A case-control study was conducted to evaluate the effect of household exposure, dietary habits, smoking and Glutathione S-Transferases M1, T1 polymorphisms on lung cancer among women in Mizoram, India. Materials and Methods: We selected 230 newly diagnosed primary lung cases and 460 controls from women in Mizoram. Multivariate logistic regression analysis was performed to estimate adjusted odds ratio (OR). Results: Exposure of cooking oil fumes (p<0.003), wood as heating source for cooking (p=0.004), kitchen inside living room (p=0.001), improper ventilated house (p=0.003), roasting of soda in kitchen (p=0.001), current smokers of tobacco (p=0.043), intake of smoked fish (p=0.006), smoked meat (p=0.001), Soda (p<0.001) and GSTM1 null genotype (p=0.003) were significantly associated with increased risk of lung cancer among women in Mizoram. Significantly protective effect was observed for intake of bamboo shoots (p=<0.001) and egg (p<0.001). A clear increase in dose response gradient was observed for total cooking dish years. Risk for lung cancer tends to increase with collegial effect of indoor environmental sources (p=0.022). Significant correlation was also observed for interaction of GST polymorphisms with some of dietary habits. Conclusions: We confirmed the important role of exposure of cooking oil emission and wood smoke, intake of smoked meat, smoked fish and soda (an alkali preparation used as food additives in Mizoram) and tobacco consumption for increase risk of lung cancer among Women in Mizoram.

Interaction of XRCC1 and XPD Gene Polymorphisms with Lifestyle and Environmental Factors Regarding Susceptibility to Lung Cancer in a High Incidence Population in North East India

  • Saikia, Bhaskar Jyoti;Phukan, Rup Kumar;Sharma, Santanu Kumar;Sekhon, Gaganpreet Singh;Mahanta, Jagadish
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.1993-1999
    • /
    • 2014
  • Background: This study aimed to explore the role of XRCC1 (Arg399Gln) and XPD (Lys751Gln) gene polymorphisms, lifestyle and environmental factors as well as their possible interactions in propensity to develop lung cancer in a population with high incidence from North East India. Materials and Methods: A total of 272 lung cancer cases and 544 controls were collected and XRCC1 (Arg399Gln) and XPD (Lys751Gln) genotypes were analyzed using a polymerase chain reaction based restriction fragment length polymorphism assay. Conditional multiple logistic regression analysis was used to calculate adjusted odds ratios and 95% confidence intervals after adjusting for confounding factors. Results: The combined Gln/Gln genotype of XRCC1 and XPD genes (OR=2.78, CI=1.05-7.38; p=0.040) was significantly associated with increased risk for lung cancer. Interaction of XRCC1Gln/Gln genotype with exposure of wood combustion (OR=2.56, CI=1.16-5.66; p=0.020), exposure of cooking oil fumes (OR=3.45, CI=1.39-8.58; p=0.008) and tobacco smoking (OR=2.54, CI=1.21-5.32; p=0.014) and interaction of XPD with betel quid chewing (OR=2.31, CI=1.23-4.32; p=0.009) and tobacco smoking (OR=2.13, CI=1.12-4.05; p=0.022) were found to be significantly associated with increased risk for lung cancer. Conclusions: Gln/Gln alleles of both XRCC1 and XPD genes appear to amplify the effects of household exposure, smoking and betel quid chewing on lung cancer risk in the study population.

Association of a p53 Codon 72 Gene Polymorphism with Environmental Factors and Risk of Lung Cancer: a Case Control Study in Mizoram and Manipur, a High Incidence Region in North East India

  • Saikia, Bhaskar Jyoti;Das, Mandakini;Sharma, Santanu Kumar;Sekhon, Gaganpreet Singh;Zomawia, Eric;Singh, Yanglem Mohen;Mahanta, Jagadish;Phukan, Rup Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10653-10658
    • /
    • 2015
  • Background: A very high incidence of lung cancer is observed in Mizoram and Manipur, North East India. We conducted a population based case control study to establish associations of p53 codon 72 polymorphisms and interactions with environmental factors for this high incidence. Material and Methods: A total of 272 lung cancer cases and 544 controls matched for age (${\pm}5years$), sex and ethnicity were collected and p53 codon 72 polymorphism genotypes were analyzed using a polymerase chain based restriction fragment length polymorphism assay. We used conditional multiple logistic regression analysis to calculate adjusted odds ratios and 95% confidence intervals after adjusting for confounding factors. Results: p53 Pro/Pro genotype was significantly associated with increased risk of lung cancer in the study population (adjusted OR=2.14, CI=1.35-3.38, p=0.001). Interactions of the p53 Pro/Pro genotype with exposure to wood smoke (adjusted OR=3.60, CI=1.85-6.98, p<0.001) and cooking oil fumes (adjusted OR=3.27, CI=1.55-6.87, p=0.002), betel quid chewing (adjusted OR=3.85, CI=1.96-7.55, p<0.001), tobacco smoking (adjusted OR=4.42, CI=2.27-8.63, p<0.001) and alcohol consumption (adjusted OR=3.31, CI=1.10-10.03, p=0.034) were significant regarding the increased risk of lung cancer in the study population. Conclusions: The present study provided preliminary evidence that a p53 codon 72 polymorphism may effect lung cancer risk in the study population, interacting synergistically with environmental factors.

P53 Arg72Pro and MDM2 SNP309 Polymorphisms Cooperate to Increase Lung Adenocarcinoma Risk in Chinese Female Non-smokers: A Case Control Study

  • Ren, Yang-Wu;Yin, Zhi-Hua;Wan, Yan;Guan, Peng;Wu, Wei;Li, Xue-Lian;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5415-5420
    • /
    • 2013
  • Background: Cell cycle deregulation is a major component of carcinogenesis. The p53 tumor suppressor gene plays an important role in regulating cell cycle arrest, and mouse double minute 2 (MDM2) is a key regulator of p53 activity and degradation. Abnormal expression of p53 and MDM2 occurs in various cancers including lung cancer. Methods: We investigated the distribution of the p53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) genotypes in patients and healthy control subjects to assess whether these single nucleotide polymorphisms (SNPs) are associated with an increased risk of lung adenocarcinomas in Chinese female non-smokers. Genotypes of 764 patients and 983 healthy controls were determined using the TaqMan SNP genotyping assay. Results: The p53 Pro/Pro genotype (adjusted OR = 1.55, 95% CI = 1.17-2.06) significantly correlated with an increased risk of lung adenocarcinoma, compared with the Arg/Arg genotype. An increased risk was also noted for MDM2 GG genotype (adjusted OR = 1.68, 95% CI = 1.27-2.21) compared with the TT genotype. Combined p53 Pro/Pro and MDM2 GG genotypes (adjusted OR = 2.66, 95% CI = 1.54-4.60) had a supermultiplicative interaction with respect to lung adenocarcinoma risk. We also found that cooking oil fumes, fuel smoke, and passive smoking may increase the risk of lung adenocarcinomas in Chinese female non-smokers who carry p53 or MDM2 mutant alleles. Conclusions: P53 Arg72Pro and MDM2 SNP309 polymorphisms, either alone or in combination, are associated with an increased lung adenocarcinoma risk in Chinese female non-smokers.