Seokhwan Bang;Sokhib Tukhtaev;Kwang Jin Ko;Deok Hyun Han;Minki Baek;Hwang Gyun Jeon;Baek Hwan Cho;Kyu-Sung Lee
Investigative and Clinical Urology
/
제63권3호
/
pp.301-308
/
2022
Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.
Purpose: The purpose of this study was to classify mandibular molar furcation involvement (FI) in periapical radiographs using a deep learning algorithm. Materials and Methods: Full mouth series taken at East Carolina University School of Dental Medicine from 2011-2023 were screened. Diagnostic-quality mandibular premolar and molar periapical radiographs with healthy or FI mandibular molars were included. The radiographs were cropped into individual molar images, annotated as "healthy" or "FI," and divided into training, validation, and testing datasets. The images were preprocessed by PyTorch transformations. ResNet-18, a convolutional neural network model, was refined using the PyTorch deep learning framework for the specific imaging classification task. CrossEntropyLoss and the AdamW optimizer were employed for loss function training and optimizing the learning rate, respectively. The images were loaded by PyTorch DataLoader for efficiency. The performance of ResNet-18 algorithm was evaluated with multiple metrics, including training and validation losses, confusion matrix, accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area under the ROC curve. Results: After adequate training, ResNet-18 classified healthy vs. FI molars in the testing set with an accuracy of 96.47%, indicating its suitability for image classification. Conclusion: The deep learning algorithm developed in this study was shown to be promising for classifying mandibular molar FI. It could serve as a valuable supplemental tool for detecting and managing periodontal diseases.
본 논문에서는 이미지의 지역적 및 전역적 특징을 결합하여 이미지의 미학적 품질을 자동으로 평가할 수 있는 CNN-ViT 하이브리드 모델을 제안한다. 이 접근 방식에서는 CNN을 사용하여 색상 및 객체 배치와 같은 지역적 특징을 추출하고, ViT를 통해 전역적 특징을 반영하여 이미지의 미학적 가치를 분석한다. Color composition은 입력 이미지에서 주요 색상을 추출해 생성한 컬러 팔레트를 CNN에 통과시켜 얻은 값이며, Rule of Third는 이미지 속 오브젝트가 삼등분할점에 얼마나 근접한지를 정량적으로 평가한 점수로 사용된다. 이러한 값들은 모델에 이미지의 주요 평가 요소인 색채와 공간 균형에 대한 정보를 제공한다. 모델은 이를 바탕으로 이미지의 점수와 색상, 공간의 균형 간에 연관성을 분석하며, 인간의 평가 분포와 유사한 점수를 추측하도록 설계되었다. 실험 결과, AADB 이미지 데이터베이스에서 스피어만순위상관계수(SRCC)에서는 0.716을 기록하여 순위 예측에서 더 일관된 결과를 제공 했으며, 피어슨상관계수(LCC)에서도 0.72을 기록하여 기존 연구 모델보다 2~4% 정도 향상된 결과를 보였다.
인공위성은 시공간적으로 연속적인 지구환경 데이터를 제공하므로 위성영상을 이용하여 효율인 작물 수확량 예측이 가능하며, 딥러닝(deep learning)을 활용함으로써 더 높은 수준의 특징과 추상적인 개념 파악을 기대할 수 있다. 본 연구에서는 Landsat 8 위성 영상을 활용하여 다시기 영상 데이터를 이용하여 5대 수급 관리 채소인 배추와 무의 수확량을 예측하기 위한 딥러닝 모델을 개발하였다. 2015년부터 2020년까지 배추와 무의 생장시기인 6~9월 위성영상을 이용하여 강원도를 대상으로 배추와 무의 수확량 예측을 수행하였다. 본 연구에서는 수확량 모델의 입력자료로 Landsat 8 지표면 반사도 자료와 normalized difference vegetation index, enhanced vegetation index, lead area index, land surface temperature를 입력자료로 사용하였다. 본 연구에서는 기존 연구에서 개발된 모델을 기반으로 우리나라 작물과 입력데이터에 맞게 튜닝한 모델을 제안하였다. 위성영상 시계열 데이터를 이용하여 딥러닝 모델인 convolutional neural network (CNN)을 학습하여 수확량 예측을 진행하였다. Landsat 8은 16일 주기로 영상이 제공되지만 구름 등 기상의 영향으로 인해 특히 여름철에는 영상 취득에 어려움이 많다. 따라서 본 연구에서는 6~7월을 1구간, 8~9월을 2구간으로 나누어 수확량 예측을 수행하였다. 기존 머신러닝 모델과 참조 모델을 이용하여 수확량 예측을 수행하였으며, 모델링 성능을 비교했다. 제안한 모델의 경우 다른 모델과 비교했을 때, 높은 수확량 예측 성능을 나타내었다. Random forest (RF)의 경우 배추에서는 제안한 모델보다 좋은 예측 성능을 나타내었다. 이는 기존 연구 결과처럼 RF가 입력데이터의 물리적인 특성을 잘 반영하여 모델링 되었기 때문인 것으로 사료된다. 연도별 교차 검증 및 조기 예측을 통해 모델의 성능과 조기 예측 가능성을 평가하였다. Leave-one-out cross validation을 통해 분석한 결과 참고 모델을 제외하고는 두 모델에서는 유사한 예측 성능을 보여주었다. 2018년 데이터의 경우 모든 모델에서 가장 낮은 성능이 나타났는데, 2018년의 경우 폭염으로 인해 이는 다른 년도 데이터에서 학습되지 못해 수확량 예측에 영향을 준 것으로 생각되었다. 또한, 조기 예측 가능성을 확인한 결과, 무 수확량은 어느 정도 경향성을 나타냈지만 배추의 경우 조기 예측 가능성을 확인하지 못했다. 향후 연구에서는 데이터 형태에 따라 CNN의 구조를 조정해서 조기 예측 모델을 개발한다면 더 개선된 성능을 보일 것으로 생각된다. 본 연구 결과는 우리나라 밭 작물 수확량 예측을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.
식물의 잎의 크기나 면적을 아는 것은 생장을 예측하고 실내 농장의 생산성의 향상에 중요한 요소이다. 본 연구에서는 상추 잎 사진을 이용해 엽장과 엽폭을 예측할 수 있는 CNN기반 모델을 연구하였다. 데이터의 한계와 과적합 문제를 극복하기 위해 콜백 함수를 적용하고, 모델의 일반화 능력을 향상시키기 위해 K겹교차 검증을 사용했다. 또한 데이터 증강을 통한 학습데이터의 다양성을 높이기 위해 image generator를 사용하였다. 모델 성능을 비교하기 위해 VGG16, Resnet152, NASNetMobile 등 사전학습된 모델을 이용하였다. 그 결과 너비 예측에서 R2 값0.9436, RMSE 0.5659를 기록한 NASNetMobile이 가장 높은 성능을 보였으며 길이 예측에서는 R2 값이 0.9537, RMSE가 0.8713로 나타났다. 최종 모델에는 NASNetMobile 아키텍처, RMSprop 옵티마이저, MSE 손실 함수, ELU 활성화함수가 사용되었다. 모델의 학습 시간은 Epoch당평균73분이 소요되었으며, 상추 잎 사진 한 장을 처리하는 데 평균0.29초가 걸렸다. 본 연구는 실내 농장에서 식물의 엽장과 엽폭을 예측하는 CNN 기반 모델을 개발하였고 이를 통해 단순한 이미지 촬영만으로도 식물의 생장 상태를 신속하고 정확하게 평가할 수 있을 것으로 기대된다. 또한 그 결과는 실시간 양액 조절 등의 적절한 농작업 조치를 하는데 활용됨으로써 농장의 생산성 향상과 자원 효율성을 향상시키는데 기여할 것이다.
우리나라의 교량은 대부분이 건설된 지 20년 이상이 지나 현재 노후화로 인하여 많은 문제점이 제기되고 있으며, 교량의 안전점검은 대부분 전문 인력의 주관적인 평가로 이루어지고 있다. 최근 교량 안전점검의 데이터의 체계적인 관리를 위해 BIM 등을 활용한 데이터 기반의 유지관리 기술들이 개발되고 있지만, BIM과 구조물의 유지관리 데이터를 연동을 위해서 영상정보를 직접 라벨링하는 수작업을 필요로한다. 따라서 본 논문에서는 이미지 기반의 자동 교량 구성요소 분류 네트워크를 개발하고자 한다. 본 연구에서 제안한 방법은 두 개의 CNN 네트워크로 구성되었다. 첫 번째 네트워크에서 특정 교량 이미지에 대하여 교량의 형식을 자동으로 분류한 뒤, 두 번째 네트워크에서 교량의 형식별로 구성요소를 분류함으로써 정확도와 효율성을 향상시키고자 한다. 본 연구에서 개발한 시스템을 검증한 결과, 847개의 교량 이미지에 대해서 98.1 %의 정확도로 교량의 구성요소를 자동으로 분류 할 수 있었다. 본 연구에서 개발한 교량의 구성요소 자동분류 기술은 향후 교량의 유지관리에 기여를 할 수 있을 것으로 기대된다.
본 논문에서는 날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 제안하는 기법은 영상장치를 이용한 딥러닝을 사용하여 날씨 변화에 따른 LED 휘도를 자동 조절함으로써 실외 LED 전광판의 시인성을 확보한다. 날씨 변화에 따른 LED 휘도를 자동 조절하기 위하여, 먼저 평면화된 배경 부분 이미지 데이터에 대한 전처리 과정을 거친 후, 합성곱 네트워크를 이용하여 학습시켜 날씨에 대한 분류를 진행할 수 있는 딥러닝 모델을 만들어낸다. 적용된 딥러닝 네트워크는 Residual learning 함수를 사용하여 입력값과 출력값의 차이를 줄임으로써 초기의 입력값의 특징을 가지고 가면서 학습하도록 유도한다. 다음에 날씨를 인식하여 날씨 변화에 따라 실외 LED 전광판의 휘도를 조절하는 제어기를 사용하여 주변 환경이 밝아지면 휘도가 높아지도록 변경하여 선명하게 보이도록 한다. 또한, 주변 환경이 어두워지면 빛의 산란에 의해 시인성이 떨어지기 때문에 전광판의 휘도가 내려가도록 하여 선명하게 보이도록 한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 날씨 변화에 따른 휘도 측정의 공인 측정 실험 결과는, 날씨 변화에 따라 실외 LED 전광판의 시인성이 확보됨을 확인하였다.
현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 안정성의 문제로 완전 자율주행 중에도 사고가 발생할 가능성이 있다. 실제로 자율주행차량은 81건의 사고를 기록하고 있다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 긴급상황을 스스로 판단하고 대처해야 하기 때문이다. 따라서 본 논문에서는 CNN을 통하여 차량 외부의 정보를 수집하여 저장하고, 저장된 정보와 차량 센서 데이터를 이용하여 차량이 처한 위기 상황을 0~1 사이의 수치로 출력하는 차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템을 제안한다. 차량 위기 감지 시스템은 CNN기반 신경망 모델을 사용하여 주변 차량과 보행자 데이터를 수집하는 차량 외부 상황 수집 모듈과 차량 외부 상황 수집 모듈의 출력과 차량 내부 센서 데이터를 이용하여 차량이 처한 위기 상황을 수치화하는 차량 위기 상황 판단 모듈로 구성된다. 실험 결과, VESCM의 평균 연산 시간은 55ms 였고, R-CNN은 74ms, CNN은 101ms였다. 특히, R-CNN은 보행자수가 적을 때 VESCM과 비슷한 연산 시간을 보이지만, 보행자 수가 많아 질수록 VESCM보다 많은 연산 시간을 소요했다. 평균적으로 VESCM는 R-CNN보다 25.68%, CNN보다 45.54% 더 빠른 연산 시간을 가졌고, 세 모델의 정확도는 모두 80% 이하로 감소하지 않으며 높은 정확도를 보였다.
화자 인증 시스템에서 입력 발성 길이의 변화는 성능을 하락시킬 수 있는 대표적인 요인이다. 이러한 문제점을 개선하기 위해, 몇몇 연구에서는 시스템 내부의 특징 가공 과정을 여러가지 서로 다른 경로에서 수행하거나 서로 다른 수용 영역(Receptive Field)을 가진 합성곱 계층을 활용하여 다양한 화자 특징을 추출하였다. 이러한 연구에 착안하여, 본 연구에서는 가변 길이 입력 발성을 처리하기 위해 보다 다양한 수용 영역에서 화자 정보를 추출하고 이를 선택적으로 통합하는 통합된 수용 영역 다양화 기법을 제안한다. 제안한 통합 기법은 입력된 특징을 여러가지 서로 다른 경로에서 다른 수용 영역을 가진 합성곱 계층으로 가공하며, 가공된 특징을 입력 발성의 길이에 따라 동적으로 통합하여 화자 특징을 추출한다. 본 연구의 심층신경망은 VoxCeleb2 데이터세트로 학습되었으며, 가변 길이 입력 발성에 대한 성능을 확인하기 위해 VoxCeleb1 평가 데이터 세트를 1 s, 2 s, 5 s 길이로 자른 발성과 전체 길이 발성에 대해 각각 평가를 수행하였다. 실험 결과, 통합된 수용 영역 다양화 기법이 베이스라인 대비 동일 오류율을 평균적으로 19.7 % 감소시켜, 제안한 기법이 가변 길이 입력 발성에 의한 성능 저하를 개선할 수 있음을 확인하였다.
본 연구에서는 저선량 흉부 CT 영상을 이용하여 VGGNet을 학습시키고 폐기종 검출 모델을 구현하고 성능을 확인하고자 한다. 연구에 사용된 저선량 흉부 CT 영상은 정상 진단 8000장, 폐기종 진단 3189장이며, 모델 학습을 위해 정상 데이터와 폐기종 데이터를 train, validation, test dataset으로 각각 60%, 24%, 16%로 무작위 추출하여 구분하였다. 학습을 위한 인공신경망은 VGGNet 중 VGG16과 VGG19를 사용하였으며, 학습이 완료된 모델 평가를 위해 정확도, 손실율, 오차 행렬, 정밀도, 재현율, 특이도, F1-score의 평가지표를 사용하였다. 폐기종 검출 정확도와 손실율은 VGG16과 VGG19 각각 92.35%, 95.88%, 0.21%, 0.09%, 정밀도는 91.60%, 96.55%, 재현율은 98.36%, 97.39%, 특이도는 77.08%, 92.72%, F1-score는 94.86%, 96.97%였다. 위의 평가지표를 통해 VGG19 모델의 폐기종 검출 성능이 VGG16 모델에 비해 우수하다고 판단된다. 본 연구를 통해 VGGNet과 인공신경망을 이용한 폐기종 검출 모델 연구에 기초자료로 사용할 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.