• 제목/요약/키워드: Convolutional Neural Network

검색결과 1,569건 처리시간 0.029초

Feasibility of a deep learning-based diagnostic platform to evaluate lower urinary tract disorders in men using simple uroflowmetry

  • Seokhwan Bang;Sokhib Tukhtaev;Kwang Jin Ko;Deok Hyun Han;Minki Baek;Hwang Gyun Jeon;Baek Hwan Cho;Kyu-Sung Lee
    • Investigative and Clinical Urology
    • /
    • 제63권3호
    • /
    • pp.301-308
    • /
    • 2022
  • Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.

Classification of mandibular molar furcation involvement in periapical radiographs by deep learning

  • Katerina Vilkomir;Cody Phen;Fiondra Baldwin;Jared Cole;Nic Herndon;Wenjian Zhang
    • Imaging Science in Dentistry
    • /
    • 제54권3호
    • /
    • pp.257-263
    • /
    • 2024
  • Purpose: The purpose of this study was to classify mandibular molar furcation involvement (FI) in periapical radiographs using a deep learning algorithm. Materials and Methods: Full mouth series taken at East Carolina University School of Dental Medicine from 2011-2023 were screened. Diagnostic-quality mandibular premolar and molar periapical radiographs with healthy or FI mandibular molars were included. The radiographs were cropped into individual molar images, annotated as "healthy" or "FI," and divided into training, validation, and testing datasets. The images were preprocessed by PyTorch transformations. ResNet-18, a convolutional neural network model, was refined using the PyTorch deep learning framework for the specific imaging classification task. CrossEntropyLoss and the AdamW optimizer were employed for loss function training and optimizing the learning rate, respectively. The images were loaded by PyTorch DataLoader for efficiency. The performance of ResNet-18 algorithm was evaluated with multiple metrics, including training and validation losses, confusion matrix, accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area under the ROC curve. Results: After adequate training, ResNet-18 classified healthy vs. FI molars in the testing set with an accuracy of 96.47%, indicating its suitability for image classification. Conclusion: The deep learning algorithm developed in this study was shown to be promising for classifying mandibular molar FI. It could serve as a valuable supplemental tool for detecting and managing periodontal diseases.

이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델 (CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images)

  • 김수은;임준식
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.352-359
    • /
    • 2024
  • 본 논문에서는 이미지의 지역적 및 전역적 특징을 결합하여 이미지의 미학적 품질을 자동으로 평가할 수 있는 CNN-ViT 하이브리드 모델을 제안한다. 이 접근 방식에서는 CNN을 사용하여 색상 및 객체 배치와 같은 지역적 특징을 추출하고, ViT를 통해 전역적 특징을 반영하여 이미지의 미학적 가치를 분석한다. Color composition은 입력 이미지에서 주요 색상을 추출해 생성한 컬러 팔레트를 CNN에 통과시켜 얻은 값이며, Rule of Third는 이미지 속 오브젝트가 삼등분할점에 얼마나 근접한지를 정량적으로 평가한 점수로 사용된다. 이러한 값들은 모델에 이미지의 주요 평가 요소인 색채와 공간 균형에 대한 정보를 제공한다. 모델은 이를 바탕으로 이미지의 점수와 색상, 공간의 균형 간에 연관성을 분석하며, 인간의 평가 분포와 유사한 점수를 추측하도록 설계되었다. 실험 결과, AADB 이미지 데이터베이스에서 스피어만순위상관계수(SRCC)에서는 0.716을 기록하여 순위 예측에서 더 일관된 결과를 제공 했으며, 피어슨상관계수(LCC)에서도 0.72을 기록하여 기존 연구 모델보다 2~4% 정도 향상된 결과를 보였다.

딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측 (Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do)

  • 박혜빈;이예진;박선영
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1031-1042
    • /
    • 2023
  • 인공위성은 시공간적으로 연속적인 지구환경 데이터를 제공하므로 위성영상을 이용하여 효율인 작물 수확량 예측이 가능하며, 딥러닝(deep learning)을 활용함으로써 더 높은 수준의 특징과 추상적인 개념 파악을 기대할 수 있다. 본 연구에서는 Landsat 8 위성 영상을 활용하여 다시기 영상 데이터를 이용하여 5대 수급 관리 채소인 배추와 무의 수확량을 예측하기 위한 딥러닝 모델을 개발하였다. 2015년부터 2020년까지 배추와 무의 생장시기인 6~9월 위성영상을 이용하여 강원도를 대상으로 배추와 무의 수확량 예측을 수행하였다. 본 연구에서는 수확량 모델의 입력자료로 Landsat 8 지표면 반사도 자료와 normalized difference vegetation index, enhanced vegetation index, lead area index, land surface temperature를 입력자료로 사용하였다. 본 연구에서는 기존 연구에서 개발된 모델을 기반으로 우리나라 작물과 입력데이터에 맞게 튜닝한 모델을 제안하였다. 위성영상 시계열 데이터를 이용하여 딥러닝 모델인 convolutional neural network (CNN)을 학습하여 수확량 예측을 진행하였다. Landsat 8은 16일 주기로 영상이 제공되지만 구름 등 기상의 영향으로 인해 특히 여름철에는 영상 취득에 어려움이 많다. 따라서 본 연구에서는 6~7월을 1구간, 8~9월을 2구간으로 나누어 수확량 예측을 수행하였다. 기존 머신러닝 모델과 참조 모델을 이용하여 수확량 예측을 수행하였으며, 모델링 성능을 비교했다. 제안한 모델의 경우 다른 모델과 비교했을 때, 높은 수확량 예측 성능을 나타내었다. Random forest (RF)의 경우 배추에서는 제안한 모델보다 좋은 예측 성능을 나타내었다. 이는 기존 연구 결과처럼 RF가 입력데이터의 물리적인 특성을 잘 반영하여 모델링 되었기 때문인 것으로 사료된다. 연도별 교차 검증 및 조기 예측을 통해 모델의 성능과 조기 예측 가능성을 평가하였다. Leave-one-out cross validation을 통해 분석한 결과 참고 모델을 제외하고는 두 모델에서는 유사한 예측 성능을 보여주었다. 2018년 데이터의 경우 모든 모델에서 가장 낮은 성능이 나타났는데, 2018년의 경우 폭염으로 인해 이는 다른 년도 데이터에서 학습되지 못해 수확량 예측에 영향을 준 것으로 생각되었다. 또한, 조기 예측 가능성을 확인한 결과, 무 수확량은 어느 정도 경향성을 나타냈지만 배추의 경우 조기 예측 가능성을 확인하지 못했다. 향후 연구에서는 데이터 형태에 따라 CNN의 구조를 조정해서 조기 예측 모델을 개발한다면 더 개선된 성능을 보일 것으로 생각된다. 본 연구 결과는 우리나라 밭 작물 수확량 예측을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.

상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교 (Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction)

  • 송지수;김동석;김효성;정은지;황현정;박재성
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.434-441
    • /
    • 2023
  • 식물의 잎의 크기나 면적을 아는 것은 생장을 예측하고 실내 농장의 생산성의 향상에 중요한 요소이다. 본 연구에서는 상추 잎 사진을 이용해 엽장과 엽폭을 예측할 수 있는 CNN기반 모델을 연구하였다. 데이터의 한계와 과적합 문제를 극복하기 위해 콜백 함수를 적용하고, 모델의 일반화 능력을 향상시키기 위해 K겹교차 검증을 사용했다. 또한 데이터 증강을 통한 학습데이터의 다양성을 높이기 위해 image generator를 사용하였다. 모델 성능을 비교하기 위해 VGG16, Resnet152, NASNetMobile 등 사전학습된 모델을 이용하였다. 그 결과 너비 예측에서 R2 값0.9436, RMSE 0.5659를 기록한 NASNetMobile이 가장 높은 성능을 보였으며 길이 예측에서는 R2 값이 0.9537, RMSE가 0.8713로 나타났다. 최종 모델에는 NASNetMobile 아키텍처, RMSprop 옵티마이저, MSE 손실 함수, ELU 활성화함수가 사용되었다. 모델의 학습 시간은 Epoch당평균73분이 소요되었으며, 상추 잎 사진 한 장을 처리하는 데 평균0.29초가 걸렸다. 본 연구는 실내 농장에서 식물의 엽장과 엽폭을 예측하는 CNN 기반 모델을 개발하였고 이를 통해 단순한 이미지 촬영만으로도 식물의 생장 상태를 신속하고 정확하게 평가할 수 있을 것으로 기대된다. 또한 그 결과는 실시간 양액 조절 등의 적절한 농작업 조치를 하는데 활용됨으로써 농장의 생산성 향상과 자원 효율성을 향상시키는데 기여할 것이다.

딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발 (Image-Based Automatic Bridge Component Classification Using Deep Learning)

  • 조문원;이재혁;유영무;박정준;윤형철
    • 대한토목학회논문집
    • /
    • 제41권6호
    • /
    • pp.751-760
    • /
    • 2021
  • 우리나라의 교량은 대부분이 건설된 지 20년 이상이 지나 현재 노후화로 인하여 많은 문제점이 제기되고 있으며, 교량의 안전점검은 대부분 전문 인력의 주관적인 평가로 이루어지고 있다. 최근 교량 안전점검의 데이터의 체계적인 관리를 위해 BIM 등을 활용한 데이터 기반의 유지관리 기술들이 개발되고 있지만, BIM과 구조물의 유지관리 데이터를 연동을 위해서 영상정보를 직접 라벨링하는 수작업을 필요로한다. 따라서 본 논문에서는 이미지 기반의 자동 교량 구성요소 분류 네트워크를 개발하고자 한다. 본 연구에서 제안한 방법은 두 개의 CNN 네트워크로 구성되었다. 첫 번째 네트워크에서 특정 교량 이미지에 대하여 교량의 형식을 자동으로 분류한 뒤, 두 번째 네트워크에서 교량의 형식별로 구성요소를 분류함으로써 정확도와 효율성을 향상시키고자 한다. 본 연구에서 개발한 시스템을 검증한 결과, 847개의 교량 이미지에 대해서 98.1 %의 정확도로 교량의 구성요소를 자동으로 분류 할 수 있었다. 본 연구에서 개발한 교량의 구성요소 자동분류 기술은 향후 교량의 유지관리에 기여를 할 수 있을 것으로 기대된다.

날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발 (Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change)

  • 이선구;이태윤;이승호
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.340-344
    • /
    • 2023
  • 본 논문에서는 날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 제안하는 기법은 영상장치를 이용한 딥러닝을 사용하여 날씨 변화에 따른 LED 휘도를 자동 조절함으로써 실외 LED 전광판의 시인성을 확보한다. 날씨 변화에 따른 LED 휘도를 자동 조절하기 위하여, 먼저 평면화된 배경 부분 이미지 데이터에 대한 전처리 과정을 거친 후, 합성곱 네트워크를 이용하여 학습시켜 날씨에 대한 분류를 진행할 수 있는 딥러닝 모델을 만들어낸다. 적용된 딥러닝 네트워크는 Residual learning 함수를 사용하여 입력값과 출력값의 차이를 줄임으로써 초기의 입력값의 특징을 가지고 가면서 학습하도록 유도한다. 다음에 날씨를 인식하여 날씨 변화에 따라 실외 LED 전광판의 휘도를 조절하는 제어기를 사용하여 주변 환경이 밝아지면 휘도가 높아지도록 변경하여 선명하게 보이도록 한다. 또한, 주변 환경이 어두워지면 빛의 산란에 의해 시인성이 떨어지기 때문에 전광판의 휘도가 내려가도록 하여 선명하게 보이도록 한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 날씨 변화에 따른 휘도 측정의 공인 측정 실험 결과는, 날씨 변화에 따라 실외 LED 전광판의 시인성이 확보됨을 확인하였다.

차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계 (A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning)

  • 손수락;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.128-133
    • /
    • 2021
  • 현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 안정성의 문제로 완전 자율주행 중에도 사고가 발생할 가능성이 있다. 실제로 자율주행차량은 81건의 사고를 기록하고 있다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 긴급상황을 스스로 판단하고 대처해야 하기 때문이다. 따라서 본 논문에서는 CNN을 통하여 차량 외부의 정보를 수집하여 저장하고, 저장된 정보와 차량 센서 데이터를 이용하여 차량이 처한 위기 상황을 0~1 사이의 수치로 출력하는 차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템을 제안한다. 차량 위기 감지 시스템은 CNN기반 신경망 모델을 사용하여 주변 차량과 보행자 데이터를 수집하는 차량 외부 상황 수집 모듈과 차량 외부 상황 수집 모듈의 출력과 차량 내부 센서 데이터를 이용하여 차량이 처한 위기 상황을 수치화하는 차량 위기 상황 판단 모듈로 구성된다. 실험 결과, VESCM의 평균 연산 시간은 55ms 였고, R-CNN은 74ms, CNN은 101ms였다. 특히, R-CNN은 보행자수가 적을 때 VESCM과 비슷한 연산 시간을 보이지만, 보행자 수가 많아 질수록 VESCM보다 많은 연산 시간을 소요했다. 평균적으로 VESCM는 R-CNN보다 25.68%, CNN보다 45.54% 더 빠른 연산 시간을 가졌고, 세 모델의 정확도는 모두 80% 이하로 감소하지 않으며 높은 정확도를 보였다.

가변 길이 입력 발성에서의 화자 인증 성능 향상을 위한 통합된 수용 영역 다양화 기법 (Integrated receptive field diversification method for improving speaker verification performance for variable-length utterances)

  • 신현서;김주호;허정우;심혜진;유하진
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.319-325
    • /
    • 2022
  • 화자 인증 시스템에서 입력 발성 길이의 변화는 성능을 하락시킬 수 있는 대표적인 요인이다. 이러한 문제점을 개선하기 위해, 몇몇 연구에서는 시스템 내부의 특징 가공 과정을 여러가지 서로 다른 경로에서 수행하거나 서로 다른 수용 영역(Receptive Field)을 가진 합성곱 계층을 활용하여 다양한 화자 특징을 추출하였다. 이러한 연구에 착안하여, 본 연구에서는 가변 길이 입력 발성을 처리하기 위해 보다 다양한 수용 영역에서 화자 정보를 추출하고 이를 선택적으로 통합하는 통합된 수용 영역 다양화 기법을 제안한다. 제안한 통합 기법은 입력된 특징을 여러가지 서로 다른 경로에서 다른 수용 영역을 가진 합성곱 계층으로 가공하며, 가공된 특징을 입력 발성의 길이에 따라 동적으로 통합하여 화자 특징을 추출한다. 본 연구의 심층신경망은 VoxCeleb2 데이터세트로 학습되었으며, 가변 길이 입력 발성에 대한 성능을 확인하기 위해 VoxCeleb1 평가 데이터 세트를 1 s, 2 s, 5 s 길이로 자른 발성과 전체 길이 발성에 대해 각각 평가를 수행하였다. 실험 결과, 통합된 수용 영역 다양화 기법이 베이스라인 대비 동일 오류율을 평균적으로 19.7 % 감소시켜, 제안한 기법이 가변 길이 입력 발성에 의한 성능 저하를 개선할 수 있음을 확인하였다.

저선량 흉부 CT를 이용한 VGGNet 폐기종 검출 유용성 평가 (Effectiveness of the Detection of Pulmonary Emphysema using VGGNet with Low-dose Chest Computed Tomography Images)

  • 김두빈;박영준;홍주완
    • 한국방사선학회논문지
    • /
    • 제16권4호
    • /
    • pp.411-417
    • /
    • 2022
  • 본 연구에서는 저선량 흉부 CT 영상을 이용하여 VGGNet을 학습시키고 폐기종 검출 모델을 구현하고 성능을 확인하고자 한다. 연구에 사용된 저선량 흉부 CT 영상은 정상 진단 8000장, 폐기종 진단 3189장이며, 모델 학습을 위해 정상 데이터와 폐기종 데이터를 train, validation, test dataset으로 각각 60%, 24%, 16%로 무작위 추출하여 구분하였다. 학습을 위한 인공신경망은 VGGNet 중 VGG16과 VGG19를 사용하였으며, 학습이 완료된 모델 평가를 위해 정확도, 손실율, 오차 행렬, 정밀도, 재현율, 특이도, F1-score의 평가지표를 사용하였다. 폐기종 검출 정확도와 손실율은 VGG16과 VGG19 각각 92.35%, 95.88%, 0.21%, 0.09%, 정밀도는 91.60%, 96.55%, 재현율은 98.36%, 97.39%, 특이도는 77.08%, 92.72%, F1-score는 94.86%, 96.97%였다. 위의 평가지표를 통해 VGG19 모델의 폐기종 검출 성능이 VGG16 모델에 비해 우수하다고 판단된다. 본 연구를 통해 VGGNet과 인공신경망을 이용한 폐기종 검출 모델 연구에 기초자료로 사용할 수 있을 것으로 사료된다.