• Title/Summary/Keyword: Convolution neural network (CNN)

Search Result 287, Processing Time 0.03 seconds

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

Content-Aware Convolutional Neural Network for Object Recognition Task

  • Poernomo, Alvin;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In existing Convolutional Neural Network (CNNs) for object recognition task, there are only few efforts known to reduce the noises from the images. Both convolution and pooling layers perform the features extraction without considering the noises of the input image, treating all pixels equally important. In computer vision field, there has been a study to weight a pixel importance. Seam carving resizes an image by sacrificing the least important pixels, leaving only the most important ones. We propose a new way to combine seam carving approach with current existing CNN model for object recognition task. We attempt to remove the noises or the "unimportant" pixels in the image before doing convolution and pooling, in order to get better feature representatives. Our model shows promising result with CIFAR-10 dataset.

Development of ResNet based Crop Growth Stage Estimation Model (ResNet 기반 작물 생육단계 추정 모델 개발)

  • Park, Jun;Kim, June-Yeong;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • Due to the accelerated global warming phenomenon after industrialization, the frequency of changes in the existing environment and abnormal climate is increasing. Agriculture is an industry that is very sensitive to climate change, and global warming causes problems such as reducing crop yields and changing growing regions. In addition, environmental changes make the growth period of crops irregular, making it difficult for even experienced farmers to easily estimate the growth stage of crops, thereby causing various problems. Therefore, in this paper, we propose a CNN model for estimating the growth stage of crops. The proposed model was a model that modified the pooling layer of ResNet, and confirmed the accuracy of higher performance than the growth stage estimation of the ResNet and DenseNet models.

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.

Effects of Preprocessing and Feature Extraction on CNN-based Fire Detection Performance (전처리와 특징 추출이 CNN기반 화재 탐지 성능에 미치는 효과)

  • Lee, JeongHwan;Kim, Byeong Man;Shin, Yoon Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • Recently, the development of machine learning technology has led to the application of deep learning technology to existing image based application systems. In this context, some researches have been made to apply CNN (Convolutional Neural Network) to the field of fire detection. To verify the effects of existing preprocessing and feature extraction methods on fire detection when combined with CNN, in this paper, the recognition performance and learning time are evaluated by changing the VGG19 CNN structure while gradually increasing the convolution layer. In general, the accuracy is better when the image is not preprocessed. Also it's shown that the preprocessing method and the feature extraction method have many benefits in terms of learning speed.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

MALICIOUS URL RECOGNITION AND DETECTION USING ATTENTION-BASED CNN-LSTM

  • Peng, Yongfang;Tian, Shengwei;Yu, Long;Lv, Yalong;Wang, Ruijin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5580-5593
    • /
    • 2019
  • A malicious Uniform Resource Locator (URL) recognition and detection method based on the combination of Attention mechanism with Convolutional Neural Network and Long Short-Term Memory Network (Attention-Based CNN-LSTM), is proposed. Firstly, the WHOIS check method is used to extract and filter features, including the URL texture information, the URL string statistical information of attributes and the WHOIS information, and the features are subsequently encoded and pre-processed followed by inputting them to the constructed Convolutional Neural Network (CNN) convolution layer to extract local features. Secondly, in accordance with the weights from the Attention mechanism, the generated local features are input into the Long-Short Term Memory (LSTM) model, and subsequently pooled to calculate the global features of the URLs. Finally, the URLs are detected and classified by the SoftMax function using global features. The results demonstrate that compared with the existing methods, the Attention-based CNN-LSTM mechanism has higher accuracy for malicious URL detection.

CNN based battery SOC estimation using thermal distribution image (CNN 기반 열 분포 영상을 이용한 배터리 SOC 추정 연구)

  • Kwon, Sanguk;Kim, Jaeho;Kim, Yongsoon;Ahn, Jeongho;Choi, Eojin;Pack, Jinu;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.453-454
    • /
    • 2019
  • 본 논문은 ESS(Energy Storage System)의 과충전, 과방전으로 인한 열 폭주 현상을 방지하기 위한 사전 연구로 원통형 리튬이온 단일 셀의 충/방전에 따른 열 분포를 열화상 카메라로 촬영하여 분석하였다. 실험을 통한 열 분포 이미지를 학습 데이터로 구성하여, SOC(State of Charge)를 추정하는 CNN(Convolution Neural Network) 모델을 제안한다.

  • PDF

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.

Deep Convolutional Neural Network with Bottleneck Structure using Raw Seismic Waveform for Earthquake Classification

  • Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.