생활 폐기물 쓰레기는 기후 변화, 자원 부족, 환경 오염을 불러오는 대표적인 문제로서, 이러한 문제를 해결하기 위해 지능적으로 쓰레기를 분류하는 방식을 연구하였고, 전통적인 분류 알고리즘부터 기계학습, 신경망에 이르기까지 많은 연구가 진행되고 있다. 그러나, 다양한 환경과 조건에서 쓰레기를 분류하기에는 여전히 데이터셋이 부족하고, 신경망 네트워크 구성 복잡도가 증가하며, 성능 측면에서도 실생활에 적용하기에 아직 미흡하다. 따라서 본 논문에서는 신속한 분류와 정확도 향상을 위해 i-YOLOX를 제안하고, 네트워크 매개변수, 검출속도, 정확도 등을 평가한다. 이를 위해 17개의 폐기물 범주를 포함하는 10,000개의 가정용 쓰레기 대상 샘플로 데이터 세트를 구성하고, YOLOX 구조에 Involution 채널 컨볼루션 연산자와 CBAM(Convolution Branch Attention Module)을 도입하여 i-YOLOX를 구성하고, 기존의 YOLO 구조와 성능을 비교한다. 실험 결과 복잡한 장면에서 쓰레기 객체 검출 속도와 정확도가 기존의 신경망에 비해 향상되어, 제안한 i-YOLOX 구조가 생활 폐기물 다중 객체 검출과 분류에 효과적임을 확인하였다.
비압축성 가정하에 Navier-Stokes 방정식을 이용하여 비정상 점성유동을 수치해석하기 위해서는 매시간 단계에서 타원형 압력 Poisson 방정식의 해를 구해야 하며, 이에 많은 계산시간이 소요된다. 본 논문에서는 직접법을 이용하여 압력 Poisson 방정식을 수치해석하였으며, 분할수 증가에 따른 소요시간 문제를 다루었다. Green 정리를 압력 Poisson 방정식에 적용하면 주어진 문제는 경계치문제로 변환되고, convolution 형의 영역적분은 F.F.T.를 이용하여 계산시간을 단축할 수 있어, 직접법 이용시 소요시간은 경계치문제의 해를 구하는 데에 좌우된다. 직접법의 검증을 위하여 해석해를 알고 있는 경우에 대하여 수치해석하였고, 물체경계조건과 정합문제에 관하여 수치해석 하였는데. 분할수가 (n.n) 시 O($n^{3}$) 미만의 계산시간으로 수치해석할 수 있었다.
Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.
본 논문에서는 고속 데이터 전송을 위한 UWB 시스템에 BPSK(Binary Phase Shift Keying)와 QPSK(Quadrature Phase Shift Keying)의 변조방식을 적용하고 고속 전송으로 발생 할 수 있는 높은 에러율을 감소시키기 위해 부호율(code rate)이 1/2 이고 구속장(constraint length)이 K=7인 convolution code를 적용하였다. 그리고 다중사용자의 접속으로 인하여 발생 할 수 있는 다중사용자 간섭을 고려하여 Time-hopping sequence를 적용하였으며, 수신단에서 viterbi decodig 알고리즘을 사용하여 수신된 신호를 복호함으로서 AWGN(Additive White Gaussian Noise) channel 환경에서의 UWB 통신시스템의 성능변화를 분석하였다.
적층판의 동적거동에 대한 유한요소해석모델개발을 목적으로 전단변형을 적합하게 고려한 적층판이론에 대한 변분원리를 유도하였다. 유도방법은 Sandhu 등에 의해 개발된 다변수 경계치문제의 변분원리이론을 따랐으며, 지배방정식의 미분연산자 매트릭스를 self-adjoint로 만들기 위하여 convolution을 이중선형사상으로 사용하였다. 유도된 적층판의 범함수에는 경계조건, 초기조건뿐만 아니라 유한요소해석모델에서 생길 수 있는 요소간 불연속조건도 포함시킬 수 있다. 상태변수의 적합함수공간을 확장하거나 특정조건을 적용하므로서 다양한 형태의 범함수를 유도할 수 있으며, 이를 통해 다양한 유한요소해석모델의 개발이 가능함을 논하였다.
This study examines the feasibility of the image deep learning method using convolution neural networks (CNNs) to maintain a porcelain insulator. Data augmentation is performed to prevent over-fitting, and the classification performance is evaluated by training the age, material, region, and pollution level of the insulator using image data in which the background and labelling are removed. Based on the results, it was difficult to predict the age, but it was possible to classify 76% of the materials, 60% of the pollution level, and more than 90% of the regions. From the results of this study, we identified the potential and limitations of the CNN classification for the four groups currently classified. However, it was possible to detect discoloration of the porcelain insulator resulting from physical, chemical, and climatic factors. Based on this, it will be possible to estimate the corrosion of the cap and discoloration of the porcelain caused by environmental deterioration, abnormal voltage, and lightning.
본 논문에서는 무선공중망을 이용하여 재택 혹은 원거리에서도 환자의 상태를 확인하고 감시함으로써 의료서비스의 이동성을 제공하기 위한 의료정보 무선전송 시스템을 제안하고, 시뮬레이션 하였다. 제안한 방법은 응급상황 발생시 의료정보를 디지털 데이터로 변환하여 PDA와 같은 이동형 단말에 전송함으로써 신속한 응급처치 등이 가능토록 한다. 시뮬레이션은 이동 무선채널환경에서 신뢰성 있는 의료정보의 전송을 위하여 IEEE 802.11a에 근거한 OFDM 전송방식을 사용하였고, AWGN과 3-ray 이동 다중경로 페이딩 환경에서 신뢰성 있는 정보전송을 위하여 콘볼루션 코딩을 적용하여 시스템 성능을 분석하였다.
In the five first sections of this paper we define and study the hypergeometric transmutation operators $V^W_k$ and $^tV^W_k$ called also the trigonometric Dunkl intertwining operator and its dual corresponding to the Heckman-Opdam's theory on ${\mathbb{R}}^d$. By using these operators we define the hypergeometric translation operator ${\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, and its dual $^t{\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, we express them in terms of the hypergeometric Fourier transform ${\mathcal{H}}^W$, we give their properties and we deduce simple proofs of the Plancherel formula and the Plancherel theorem for the transform ${\mathcal{H}}^W$. We study also the hypergeometric convolution product on W-invariant $L^p_{\mathcal{A}k}$-spaces, and we obtain some interesting results. In the sixth section we consider a some root system of type $BC_d$ (see [17]) of whom the corresponding hypergeometric translation operator is a positive integral operator. By using this positivity we improve the results of the previous sections and we prove others more general results.
Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1778-1797
/
2021
Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.
Convolution Neural Network(CNN) is a class of deep learning algorithms and can be used for image analysis. In particular, it has excellent performance in finding the pattern of images. Therefore, CNN is commonly applied for recognizing, learning and classifying images. In this study, the surface defect classification performance of Al 6061 extruded material using CNN-based algorithms were compared and evaluated. First, the data collection criteria were suggested and a total of 2,024 datasets were prepared. And they were randomly classified into 1,417 learning data and 607 evaluation data. After that, the size and quality of the training data set were improved using data augmentation techniques to increase the performance of deep learning. The CNN-based algorithms used in this study were VGGNet-16, VGGNet-19, ResNet-50 and DenseNet-121. The evaluation of the defect classification performance was made by comparing the accuracy, loss, and learning speed using verification data. The DenseNet-121 algorithm showed better performance than other algorithms with an accuracy of 99.13% and a loss value of 0.037. This was due to the structural characteristics of the DenseNet model, and the information loss was reduced by acquiring information from all previous layers for image identification in this algorithm. Based on the above results, the possibility of machine vision application of CNN-based model for the surface defect classification of Al extruded materials was also discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.